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Abstract

This research presents a comprehensive control co-design (CCD) framework for wind turbine systems,
integrating nonlinear derivative function surrogate models (DFSMs) developed through OpenFAST lin-
earization and data-driven approaches. The primary motivation for developing the DFSM is to accurately
capture the nonlinear dynamics of wind turbine systems in a computationally efficient manner, thereby en-
abling effective and scalable optimization within the CCD framework. The developed DFSMs successfully
represent state derivatives and system output responses across extensive plant, control, and state variables
ranges, validated against direct simulation outputs. By concurrently optimizing plant and control designs,
the CCD approach leverages their synergistic interactions, resulting in significant reductions in the lev-
elized cost of energy (LCOE) through an optimized balance of annual energy production (AEP) and costs
associated with plant design parameters, while adhering to design and physical constraints. Comparative
analyses demonstrate that CCD, particularly when utilizing open-loop optimal control (OLOC), outper-
forms traditional closed-loop control (CLC) strategies. Sensitivity and sparsity analyses reveal critical in-
terdependencies among design variables, emphasizing key input-output parameter relationships that guide
targeted design optimizations. These studies build on pioneering DFSM work that was limited to a handful
of design and state variables; this work advances DFSM capabilities to the level of practical utility in en-
gineering design for the first time. This work presented here serves as a foundational exploration; authors
advocate for future research to incorporate broader constraints and other considerations to further advance
CCD methodologies for wind turbine system optimization.
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1. Introduction

Developing highly efficient large-scale wind turbine systems requires a system description that accu-
rately captures the real-world behavior of the coupled system. Furthermore, it requires design methodolo-
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gies that thoroughly explore the complex design space while accounting for the system’s inherent design
coupling. Many researchers in renewable energy have recently investigated the technical possibilities and
innovative potential of an integrated plant (physical domain) and control design methodology [1–7], of-
ten referred to as control co-design (CCD) [5, 7–10]. The CCD approach redefines the principles of wind
turbine design by leveraging synergistic interfacial couplings between the physical and control domains,
thereby exceeding the possibilities offered by traditional sequential design approaches, where the physical
system is designed and then the control is tuned for the already designed plant. Although the significance
of applying CCD to wind energy systems is well established in recent literature, its practical implemen-
tation has encountered certain limitations [1, 10]. This paper aims to address several of these limitations,
including modeling approaches, control schemes, objective function formulations, plant design variables,
and constraints, among other aspects.

In this context, Sect. 1.1 provides a thorough review of existing literature, identifying critical limitations
in prior CCD methodologies for wind turbine systems. In Sect. 1.2, we outline the considerations and
approaches adopted in this study to overcome these challenges. Section 2 introduces the methods and
models used to construct the proposed framework, while Sect. 3 presents the problem formulation and
optimization procedures. The results of various optimization scenarios are analyzed in Sect. 4. Finally, in
Sect. 5, we conclude with key findings and discuss their implications for practical applications and future
research needs.

1.1. Literature Review
Numerous early and ongoing research efforts interpret the term CCD in varying ways, often adopting

practical yet limited approaches to the concept. For instance, some studies focus exclusively on control
design, often neglecting the critical interactions with plant design [11]. Others employ sequential or itera-
tive sequential design methods that, while providing valuable practical design insights, do not necessarily
guarantee convergence to a system-optimal CCD solution [1]. Simplified modeling approaches, such as
frequency domain analysis, can be advantageous for broader design exploration during early-stage design
processes [12, 13]. However, these methods may struggle to capture critical system dynamic behaviors,
which are particularly important in floating offshore wind turbine (FOWT) CCD solutions. Additionally,
some studies restrict their CCD applications to limited design load cases (DLCs), such as focusing on a sin-
gle wind speed profile [14, 15]. While this simplification can facilitate analysis and provide initial insights,
it fails to capture the realistic variability of objective and constraint function values encountered in practical
scenarios.

Regarding wind turbine control design, previous studies have focused primarily on designing and tuning
relatively simple closed-loop controllers (CLCs) [1, 11, 13, 16–19]. Meanwhile, some articles have explored
advanced controllers and optimal control approaches, such as model predictive control (MPC) [20, 21] and
open-loop optimal control (OLOC) [4, 5, 14, 15]. OLOC computes an entire control trajectory in advance by
optimizing it over a finite (fixed or variable) time horizon without using real-time feedback during execution.
Furthermore, regardless of the control scheme employed, many studies have focused on optimizing only one
control signal, often the generator torque or blade pitch, rather than a more holistic control perspective [13–
16, 22].

Modern utility-scale turbines mostly employ CLCs as their primary control loop, including simple
proportional-integral (PI) or proportional-integral-derivative (PID) controllers, due to their simplicity and
practical effectiveness. CLCs provide tunability and feedback control capability in controlling generator,
yaw motor, and blade pitch actuators [23]. These easy-to-implement characteristics and cost-effectiveness
make CLCs widespread in industrial controls applications [24–26]. However, their inherent lack of flexi-
bility can constrain efforts to explore system-optimal designs and limit understanding of design trade-offs
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during the early stage development. In contrast, while OLOCs are not directly practical because they depend
on knowledge of the entire time horizon and do not provide real-time control solutions, they offer greater
design flexibility. This flexibility facilitates the discovery of innovative design solutions and insights into
the maximum potential of the system [5, 27], which can subsequently inform and refine CLC designs at
later development stages [28].

The choice of optimization metrics in previous CCD research is another topic that has been studied
from diverse perspectives. Although the levelized cost of energy (LCOE) is a direct and comprehensive
metric, many studies have opted for alternative objective functions [29]. In the context of CCD, relatively
few studies have optimized LCOE or similar metrics, and even then with limitations [4, 5, 18], largely due
to the associated technical complexities and recognized incompleteness of the LCOE metric [30]. Common
alternatives include mass [31], annual energy production (AEP) [15, 19, 32], blade root bending moment
[11, 33], power quality [13], and weighted combinations of these factors [11, 13, 14, 34]. Motivations for
these alternative metrics include mitigating the noise and poor scaling often found in LCOE calculation,
which complicate gradient-based optimization, and simplifying scope by concentrating on a single, well-
defined objective function [15, 30, 31]. Such alternatives typically emphasize aspects of energy production,
system integrity, or cost, while avoiding the additional complexities of computing LCOE.

Prior literature also tends to optimize individual components of wind turbine systems, such as platforms
[4], towers [32, 35, 36], blades [1, 18, 33], or farm layouts [19, 37], rather than employing a holistic system
model encompassing all key elements. Furthermore, CCD problems in existing research often adopt a
limited set of simplified constraints, such as lower and upper bounds of design variables [4, 34]. This
focused approach arises from the complex, multidisciplinary integration challenges inherent to wind turbine
systems. Accounting for these interactions significantly increases optimization complexity, demanding
advanced simulation tools to capture the behaviors of multiple interacting components efficiently, while
increasing the risk of convergence to suboptimal designs.

1.2. Strategies Utilized in This Study

Models with first-principles, low-order governing equations [3, 5, 38] or those simplified from higher-
fidelity representations, such as linearizations [39, 40], are frequently employed in CCD problems because
models that capture the full-scale dynamic response are often computationally too expensive for use in
the CCD optimization loop. In particular, for wind turbine design research, many studies have utilized
linearized dynamic models encompassing both plant and control domains [4, 14, 39–44]. While these lin-
earized models offer valuable insights, certain limitations must be addressed to ensure accurate and reliable
CCD solutions, thereby minimizing the risk of misinterpretation or error beyond acceptable ranges in de-
sign processes. Notably, the linear model should be constructed around the center point of the operating
range, with states and design variable values kept close to this point to maintain the validity of the linearized
approximation [43]. However, this requirement restricts the model’s ability to capture the overall nonlinear
behavior of the system, as a single operating point may not represent broader system dynamics. Moreover,
large variations in states or exogenous inputs, such as wind speed, often exceed the small deviation range re-
quired for model linearity, thereby reducing both the evaluation capability and the design flexibility beyond
baseline design.

Another approach to modeling for CCD optimization involves treating the full nonlinear system as
a black-box and tuning several key plant and control gain parameters [1, 41, 45]. Numerous wind turbine
aero-elasto-hydro-servo simulation tools, including OpenFAST [46], OWENS [47], and Bladed [48], predict
nonlinear system behaviors by solving relevant disciplinary domain models in a coupled manner through
forward time-domain integration. During this process, instantaneous physical quantities from all disciplines
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Figure 1: Training procedure of the derivative function surrogate model (DFSM), represented as an extended design structure
matrix (XDSM).

are internally coupled via differential-algebraic equations (DAEs), and direct access to local time-derivative
variables is typically unavailable (which is needed for important classes of CCD solution strategies [9]).

Given this simulation structure and the “fully packaged” nature of these modeling tools, optimization
problems are generally formulated and solved independently of the simulation loop [45]. Additionally, when
a specific controller, such as a PID controller, is incorporated, it is often infeasible to perturb the control
trajectory to determine the sensitivity of the overall system response. As a result, exploring both plant and
control designs within the time integration process, e.g., via direct transcription methods [49], becomes
impractical. Consequently, CCD problems that rely on black-box simulation tools often use single-shooting
formulations, which can be inefficient and may fail to guarantee convergence to optimal solutions, especially
in the presence of unstable or highly nonlinear system behaviors [50–53].

Derivative function surrogate modeling (DFSM), first proposed by Deshmukh and Allison [14], com-
bines the strengths of the preceding approaches by leveraging time-derivative information from full, nonlin-
ear, black-box simulations. DFSM has since been applied to a wide range of dynamic systems representation
and optimization studies [40, 54–57]. Rather than replacing the entire black-box simulation end response
with a surrogate model, DFSM substitutes state- and control-dependent system dynamic governing equation
with a surrogate model. Nonetheless, surrogate models typically face scalability challenges, as computa-
tional cost can grow exponentially with higher-dimensional inputs. Although DFSM effectively provides
derivative function information for computationally expensive nonlinear simulation models, previous im-
plementations have been significantly constrained in several aspects. These include a limited problem scale
because the input space for plant and control design parameters is combined into a single system-level
derivative function [14, 57]. Furthermore, the control portion of the model still remains linear, limiting its
ability to fully capture nonlinear control dynamics [14].

These challenges highlight the need for a nonlinear DFSM capable of accurately representing wind tur-
bine system behaviors while providing the necessary derivative function information. This work addresses
these needs by introducing a CCD optimization based on a nonlinear wind turbine system model that em-
ploys surrogate models of derivative functions. These surrogate models are constructed from a broad dataset
of linearized OpenFAST models spanning a wide range of environmental conditions and design parameter
spaces [40].

2. Methods

2.1. Plant Design Variables and DFSM Construction
The DFSM was trained using the OpenFAST model of the IEA 15 MW reference wind turbine [58];

the structure of this model is illustrated in Fig. 1 using an extended design structure matrix (XDSM) [59].

4



Figure 2: Plant design parameters

Variables (parallelograms) above and next to each disciplinary model (rectangles) represent inputs and
outputs of the model, respectively. Training samples were generated within the parameter vector space
defined by the lower and upper bounds, zlb and zub. The parameter vector (z), which serves as the DFSM
input, consists of five plant design parameters and one exogenous input variable. The plant parameter
vector (zp) includes five key plant design variables: hub height (lhub), tower top diameter (Dtop), tower
bottom thickness (bbase), tower top thickness (btop), and rotor diameter (Drotor), while the exogenous input
parameter is the wind speed at the hub location (v). Thus, the parameter vector for the DFSM is given as:

z =
[
zT

p , v
]T

=
[
lhub, Dtop, bbase, btop, Drotor, v

]T
,

(1)

and these variables are also illustrated in Fig. 2. For this study, the lower and upper bounds of these
parameters were defined around the reference turbine design, given as:

zlb = [150.0, 4.0, 0.025, 0.005, 230.0, 3.0]T ,

zub = [155.0, 7.1, 0.045, 0.025, 240.0, 25.0]T .
(2)

Using the enhanced stochastic evolutionary (ESE) space-filling method [60], a total of 500 unique plant
design sample points were generated in the five-dimensional hyperspace, zp ∈ R5. These points were
uniformly distributed within the hyperspace and constrained within the prescribed bounds. For each plant
design sample point, 23 periodic steady-state OpenFAST simulation cases were created, spanning from
cut-in to cut-out wind speeds, and solved to obtain linear models by leveraging distributed-memory parallel
computing.

Due to constraint violations, only 421 of the 500 distinct plant design samples could be successfully
evaluated; with 23 wind-speed operating points per design, this yielded 9,683 (= 421 × 23) linear models
from the OpenFAST periodic steady-state simulations, which constitute the training dataset. In addition,
to assess DFSM performance, a separate test set of 80 distinct plant designs, each evaluated with 23 wind-
speed operating points per design, are generated for a total of 80 × 23 = 1, 840 cases.
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2.2. DFSM-based Wind Turbine Dynamic Model

OpenFAST generates a linear time-invariant (LTI) model of the periodic steady-state dynamic responses
at a specified operating point, expressed as:

ξ̇ (t) = A
[
ξ (t) − ξop

]
+ B

[
u (t) − uop

]
y (t) = C

[
ξ (t) − ξop

]
+ D

[
u (t) − uop

]
+ yop

(3)

where ξ is the vector of state variables and y is the vector of system output variables. The states, controls,
and system responses at the operating point (ξop, uop, and yop) are determined after the simulation converges
to a periodic steady-state [39]. Because A, B, C, and D are time-invariant (constant) matrices, the dynamic
model remains valid only for small deviations around the operating point under a fixed plant design and
wind speed.

To extend this model, we replace the state- and control-dependent system matrices in the linear model
with nonlinear, parameter-varying surrogate matrices, which include additional input parameters for dif-
ferent plant designs and operating conditions. The trained DFSM retains a model structure similar to
OpenFAST LTI models but makes the matrices and operating point vectors functions of plant design and
instantaneous wind speed. The DFSM-based dynamic model is given by:

ξ̇ (t) = Â
(
z
) [
ξ (t) − ξ̂op (

z
)]
+ B̂

(
z
) [

u (t) − ûop
(
z
)]

y (t) = Ĉ
(
z
) [
ξ (t) − ξ̂op (

z
)]
+ D̂

(
z
) [

u (t) − ûop
(
z
)]
+ ŷop

(4)

where a circumflex over a function (of any dimension) indicates an approximation (surrogate model) of that
function (e.g., Â

(
z
)

is an approximation of the true matrix-valued function A
(
z
)
). The resulting state-space

system features two DFSM-derived, parameter-varying matrices that separately capture state-dependent and
control-dependent system behaviors.

The linear models were obtained from periodic steady-state OpenFAST simulations in which the Na-
tional Renewable Energy Laboratory (NREL)’s Reference Open-Source Controller (ROSCO)-generated the
controlled dynamic behavior of the wind turbine. Consequently, each linearization captures the closed-loop
dynamics of the plant operating under ROSCO’s control scheme. Training the DFSM on this collection of
linear models therefore yields a surrogate that emulates the combined plant and ROSCO behavior.

The OpenFAST linearization process requires approximately 5 to 30 minutes per case using a 2.5GHz
AMD EPYC 7502 processor core, depending on how quickly the dynamics converge to periodic steady-state
conditions. Leveraging parallelization, up to 60 linearization cases were solved simultaneously. Complet-
ing the 9,683 linearization problems required to build the DFSM training dataset required approximately
50 hours. The outputs of OpenFAST linearization include the vector of nominal values of states (ξop), such
as tower fore-aft deflection, tower fore-aft rate, and rotor rotational speed; the vector of nominal control
parameter value (uop), including generator torque and blade collective pitch angle; vector of nominal Open-
FAST output quantities (yop), such as thrust force, aerodynamic torque, and moments; and the linearization
matrices A, B, C, and D.

Figure 3 illustrates the performance of the trained DFSM. In Fig. 3(a), the horizontal axis represents
the quantity calculated by the OpenFAST simulation, while the vertical axis represents those predicted by
the DFSM. The thick gray lines in the background indicate perfect agreement; data points lying on these
lines confirm the DFSM’s accuracy. The training data appears as small black dots, whereas the test data is
shown as hollow squares in distinct colors corresponding to different quantities, including rotor rotational
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Figure 3: Responses of trained derivative function surrogate models (DFSMs). (a) Predicted responses of DFSMs compared to true
simulation responses. (b) Responses of trained DFSMs across varied wind speeds and plant designs. (c) Turbulent inflow wind
profile employed for the time-domain comparison between the DFSM and OpenFAST. (d) Comparison of rotor rotational speed
time-domain responses predicted by the DFSM and obtained from OpenFAST.

speed (ω), side-to-side moment (τss), generator torque (Tgen), blade collective pitch angle (β), Cost, and
select elements i and j of the matrices A, B, C, and D. These matrix entries are the coefficients that
multiply the state and control input variables to produce the corresponding state derivatives and system
outputs, representing state-space model. For example, in the rotor-speed derivative formula (ω̇r = A2,2ωr +

B2,0v+ · · · ), coefficient A22 scales the rotor speed ωr term, B2,0 scales the wind speed v term, and continues.
Likewise, coefficient C12,2 maps ωr to the value of tower-base torsional moment Mbase,tors and D14,0 maps
wind speed v to the value of tower top side-to-side shear force Ftop,s-s. Although many entries populate these
matrices in representing full system dynamics, we plot only representative coefficients that are directly tied
to the key performance metrics in Fig. 3. Notably, the predicted quantities closely match the simulation-
generated data, demonstrating the effectiveness of the DFSM approach. For the test data points, the mean
absolute error and standard deviation are 0.001 and 0.008, respectively.

In Fig. 3(b), selected quantities are shown across wind speeds ranging from cut-in (3 m/s) to cut-out
(25 m/s) speeds. The training data appears as small, vertically distributed black dots at each integer wind
speed, reflecting plant design variability introduced by 421 distinct plant designs. Notably, some quantities,
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such as τss, exhibit a stronger correlation with changes in plant design parameters, while others, such as
β, remain relatively insensitive to these variations. Large, color-coded circles show the true simulated
response of each quantity for a selected plant design at each wind speed level. Solid lines of the matching
color illustrate DFSM predictions for the same plant design across the full wind speed range, in 0.01 m/s
increments, underscoring the DFSM’s predictive accuracy. Note that the quantities in this figure have been
normalized to enhance visualization clarity.

To evaluate how well the trained DFSM reproduces time-domain behavior, we compared its response
with that of OpenFAST for a turbulent inflow wind profile with an average of 8 m/s, as shown in Fig. 3(c).
The OpenFAST simulation was run for 720 s in total, including a 120 s transient followed by a 600 s analysis
window. After discarding the first 120 s, we extracted the control signals from the remaining 600 s data and
supplied them to the trained DFSM. Figure 3(d) shows the resulting rotor rotational speedωr, demonstrating
that the DFSM response closely matches the OpenFAST result, while cutting computational time from
roughly 8 minutes to 20 seconds. This substantial speed-up makes the DFSM particularly attractive for
CCD studies that require many iterations. Based on the DFSM strategy and responses validated in this
section, it is evident that the DFSM demonstrates high accuracy in predicting state derivatives across the
combined design and state space; this accuracy is a requirement for utility in finding approximately system-
optimal designs when using the DFSM for CCD optimization tasks.

2.3. Insights Obtained From the Trained DFSM

The primary purpose of training the DFSM is to embed it in the CCD framework. However, beyond
the primary use, this surrogate model can also reveal insights into how inputs and outputs, including design
variables, states, and controls influence to each other, by closely observing sensitivities of output variables,
such as cost, power, cost-to-power ratio, tower-top stress (σtop), and tower-base stress (σbase), with respect
to the DFSM input vector (z), which includes wind speed and five plant design variables. Sensitivities are
computed as:

S j =

∥∥∥∥∥∥∥y j(zi+) − y j(zi−)
y j(z)

∥∥∥∥∥∥∥ , (5)

where, subscript j represents indexes of each output and i denotes indexes of each input. Starting from
the output of baseline design at a 10 m/s wind speed, denoted as y j

(
z
)
, each input is perturbed by ±2.5%,

yielding zi+ and zi−. The resulting 5% spread allows to show which inputs most strongly affect each outputs
in terms of sensitivity. The sensitivity S j is calculated based on this perturbation and normalized by the
baseline output.

Figure 4 illustrates the normalized sensitivities S j of input variables (color-coded in the legend) for
each of the five output variables arranged along the horizontal axis. For clearer comparison, the sensitivity
bars within each output group are rescaled by that group’s maximum S j value and the corresponding raw
maximum value is printed above the bars. Hence, the most influential input in each group appears at 1.0,
and all others are scaled relative to that reference.

As seen in the first group, rotor diameter Drotor is the most sensitive factor that drives cost. Of the two
variables defining the tower-top geometry, diameter Dtop affects cost approximately five times more than
wall thickness btop. However, for tower-top stress (fourth group on the horizontal axis), the ratio is roughly
2:1. Hence, thickening btop is generally a cheaper way to satisfy the tower-top stress limit than enlarging
Dtop, which is a trade-off confirmed later in the CCD results.

Power is dominated by wind speed, hub height lhub, and rotor diameter Drotor, in line with established
engineering expectations. Higher wind speeds supply more extractable aerodynamic power, a taller hub
height exposes the rotor to stronger flows due to atmospheric shear, and a larger rotor diameter expands
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base thickness, tower-top thickness, and rotor diameter.

the swept area. These three inputs likewise govern the cost-to-power ratio, whereas the other design vari-
ables mainly affect the stress outputs. The plot therefore indicates which variables matter most for each
performance metric, the trend confirmed by the CCD results discussed later in Sect. 4.

Another interesting study is to examine the effect of states, wind, and control signals on the state deriva-
tives and outputs. To accomplish this, an in-depth assessment on the influence of time-dependent input
variables (e.g., states, controls, and wind speed) on time-dependent output variables (e.g., state derivatives,
stresses, and system responses) is presented in Fig. 5. This figure visually conveys the relative importance
of each input variable values on the responses or outputs, with darker elements within the matrix indicating
stronger connection between the corresponding columns and rows.

Figure 5(a) highlights impact of the state, wind, and control inputs on selected state derivatives (rates
of change). Here, x represents the tower fore-aft position, and ẋ denotes the tower fore-aft velocity. As
previously discussed in Eq. (4), the state derivatives rely on the states, control inputs, and wind speed
through the DFSM matrices Â and B̂. It is evident that the first row (derivative of x, i.e., ẋ) is predominantly
dependent on the second column (i.e., ẋ), which is expected because they convey essentially the same
information. Additionally, when examining ω̇, it becomes apparent that it is primarily influenced by wind
speed v, followed by blade pitch β, rotor rotational velocity ω, and generator torque Tgen.

The system output y, comprising 19 distinct time-dependent variables, is interconnected with the sys-
tems’ states, wind conditions, and control inputs through the DFSM matrices Ĉ and D̂, as shown in Eq. (4).
Figure 5(b) provides insight into the impact of the state, wind, and control inputs on selected system output
variables. Here, Frotor is aerodynamic force and Trotor is aerodynamic torque on the wind turbine rotor.
Other output variables represent force (F) and moment (M) components at the tower top and base sections,
denoted by subscripts “top” and “base,” respectively; subsequent subscripts represent fore-aft (f-a), side-
to-side (s-s), axial (ax), and torsional (tors) components. It becomes evident that the blade pitch angle (β)
exerts the most substantial influence on many of the system outputs. Generator torque Tgen significnatly
affects side-to-side moments at both the tower top and base, as well as aerodynamic torque. Consequently,
adjusting generator torque emerges as a key parameter in the optimization problem when aiming to modify
these specific forces and moments, aligning with human engineering intuition of the overall wind turbine
system. This analysis aids in understanding which input variables play the most pivotal roles in altering the
system’s output responses.
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Figure 5: Influence of input variables (horizontal axis, influencing variables) on output variables (vertical axis, influenced vari-
ables). Darker cells denote strong influence, while lighter cells represent weaker or negligible influence. (a) Effect of states, wind
speed, and control inputs on state derivatives. (b) Effect of the same inputs on various wind turbine system responses (forces and
moments). (c) Effect of those forces and moments on tower stresses.

Figure 5(c) illustrates the impact of various moments and forces on the stress experienced by the tower
at its top and base sections. Notably, the fore-aft moment Mf-a exerts the greatest stress on both the upper
and lower sections, while the torsional moment, side-to-side force, and fore-aft force have comparatively
minimal effects. As depicted in Fig. 5(b) the primary influencers of Mf-a are blade pitch β and fore-aft
motion x. Therefore, to manipulate stress within the desired constraints, the optimization problem must
adjust these two variables. It is important to note that in this analysis, we exclusively consider von Mises
stress; consequently, there could be other criteria where the significance of these other forces may be more
influential.

2.4. Operating Environmental Conditions

The Weibull probability density function (PDF) used here to model wind speed distribution is given by:

f (v) =
(
k
c

) (v
c

)k−1
exp

[
−

(v
c

)k
]

(v > 0 ; k, c > 0) , (6)

where k is a dimensionless shape parameter and c is the scale parameter in units of wind speed. Because
wind speed increases with height, a reference scale parameter c0 at height H0 can be used to determine c at
any other height H via the power law [61], given by:

c = c0

(
H
H0

)α
. (7)

In this study, k = 2.0, α = 0.11, c0 = 11.28, and H0 = 150 m. Figure 6(a) shows the PDF at two heights
(150 m and 155 m). The left vertical axis displays the PDF for both heights, while the right vertical axis
indicates the difference between them. As observed, at wind speeds greater than c0, the PDF at 155 m
exceeds the PDF at 150 m, which affects energy production. This effect is illustrated in Fig. 6(b), where
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Figure 6: Effect of increasing the baseline wind turbine’s hub height on the Weibull PDF, P f , and AEP. (a) Comparison of the
Weibull PDF and wind speed for the baseline tower when the hub height increases from 150 m to 155 m. (b) Corresponding P f
and resulting changes in AEP.

P f (the product of power and the Weibull PDF) is plotted for a baseline tower with its height from 150 to
155 m. The slightly higher P f at 155 m at high wind speeds yields an additional 0.22 GWh of AEP when
compared to 150 m.

Using the Weibull distribution, the AEP (in Wh/year) is computed by:

AEP = 8760
∫ vo

vi

P (v) f (v) dv, (8)

where vo is the cut-out speed, vi is the cut-in speed, P is the turbine’s output power, and 8,760 is the total
number of hours in a year (the product of 365 days and 24 hours/day). In this study, 11 wind profiles
representing DLC 1.1 with the normal turbulence model (NTM), as specified in the IEC standard [62], are
used. Each profile has different average wind speeds. These profiles appear in Fig. 7(a) as solid lines, with
dashed lines indicating their respective mean values. For each wind profile, the PDF is derived according
to its mean wind speed, and the turbine’s power output is obtained by simulating a 600-second interval and
taking the average power.

Figure 7(b) presents AEP, Cost, and LCOE for six different hub heights, keeping all other parameters
at their baseline values. The DFSM is used to predict power generation. The horizontal axis corresponds to
hub height, while the vertical axis shows normalized AEP, Cost, and LCOE values relative to the baseline
case (H = 150 m). As indicated, increasing the hub height boosts both AEP and Cost, but decreases
LCOE. Consequently, if there are no explicit constraints that limit the hub height, the optimization naturally
converges to higher hub heights.
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Figure 7: Wind speed profiles used for DLC 1.1, along with the effects of hub height on performance. (a) Eleven wind profiles
used for DLC 1.1, each with a distinct average wind speed. (b) Variations in LCOE, AEP, and Cost in response to changes in hub
height.

3. Problem Formulation

The problem formulation is presented in Eq. (9), given as:

minimize
zp, u(t), ξ(t)

LCOE
(
zp, u (t) , ξ (t)

)
=

Cost
(
zp

)
AEP

(
t, zp, u (t) , ξ (t)

) [USD/MWh] (9a)

subject to zp,lb ≤ zp ≤ zp,ub (9b)

ulb ≤ u (t) ≤ uub (9c)

ξ
lb
≤ ξ (t) ≤ ξ

ub
(9d)

0 ≤ σbase

(
t, zp, u (t) , ξ (t)

)
≤ σbase,ub (9e)

0 ≤ σtop

(
t, zp, u (t) , ξ (t)

)
≤ σtop,ub (9f)

ξ3 (t0) = ξ̂op
3 (9g)

ζ (t) = ξ̇ (t) −
{
Â

(
z
) [
ξ (t) − ξ̂op (

z
)]
+ B̂

(
z
) [

u (t) − ûop
(
z
)]}
= 0 (9h)

where z =
[
zT

p , v
]T

(9i)

AEP
(
z†p, u∗ (t) , ξ∗ (t)

)
= 8760

vo∑
v=vi

[
P∗

(
z†p, u∗ (t) , ξ∗ (t) , v

)
f
(
v, z†p

)]
. (9j)

The main objective is to minimize the LCOE (9a). LCOE depends on two primary components: Cost,
which is solely a function of plant parameters in the model used here (as costs related to control scheme
is not captured in the model), and AEP, which depends upon plant design variables and control and state
trajectories.

The term Cost (zp) in Eq. (9a) is evaluated with the Wind-plant Integrated System Design & Engineering
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Model (WISDEM), an open source code developed and maintained by the NREL [63]. Starting from
WISDEM input for the IEA 15 MW reference turbine as a baseline, WISDEM’s component-wise cost
and scaling model (CSM) translate each candidate FOWT design into detailed capital and operating cost
estimates. The design variables, including dimensions, are passed directly to the subsystem models, which
update component and material masses and costs. Furthermore, approximations for balance of station cost,
operational and maintenance costs based on the provided turbine design are also provided. The WISDEM
CSM estimates use simple regressions based on theories and scaling studies [64–67]. A full description
of WISDEM’s cost formulations is beyond the scope of this paper. The reader is referred to the model
documentation [68] for further detail.

The optimization process must satisfy variable bounds on plant design variables (9b), path and boundary
constraints on control and system state trajectories (9c, 9d, and 9g), and path constraints on the tower top
and bottom stresses (9e and 9f). The initial value of the third state, ξ3 (t) = ω (t), is obtained from the DFSM
using the ROSCO controller [26], and the system dynamics are governed by a defect constraint, ζ(t) = 0
(9h). This defect constraint enforces the DFSM-based dynamic governing equation given in Eq. (4) over the
entire time horizon. This constraint depends both upon design variables and wind speed (9i). To calculate
the AEP, the optimal output power P must be determined for the 11 distinct wind profiles shown in Fig. 7
and summed, taking into account the corresponding PDFs (9j).

We employ a nested CCD approach. In the outer loop, we update plant design parameters and compute
the Cost, while in the inner loop, we maximize AEP, thereby minimizing LCOE for the current plant con-
figuration. Specifically, the inner loop maximizes the time-averaged output power across 11 distinct wind
speeds in a 600-second simulation, subject to the constraints. These profiles cover the entire Region 2 and
Region 3 operating envelope. A 600 s time horizon is (i) sufficiently long to capture continuous transient
behavior while minimizing impact of numerical instabilities and settling transients, yet (ii) short enough
to be evaluated hundreds of times within the optimization loop, a duration commonly adopted in transient
wind-turbine studies. Given that these 11 independent 600 s wind profiles each represent a wind-speed
bin of Weibull probabilistic distribution, weighting their time-averaged power outputs by these probabili-
ties yields an unbiased, computationally efficient estimate of AEP. The same weighted sum constitutes the
denominator of the outer-loop LCOE objective, ensuring full consistency between the inner-loop maximiza-
tion and the outer-loop minimization. The inner-loop objective function is:

P =
1

t f − t0

∫ t f

t0

(
P (t) − 10−7u̇2

1 (t) − 107u̇2
2 (t)

)
dt, (10)

where P is the time-averaged power for each wind speed v shown in Fig. 7(a). The variables u1 and u2
denote the control signals (generator torque and blade pitch), respectively, while u̇1 and u̇2 are their time
derivatives. The third and fourth terms of the integrand form a penalty function that addresses singular arc
issues. These penalty terms were calibrated by testing different values that yielded good performance of the
OLOC solver while keeping each penalty term at least four orders of magnitude smaller than the nominal
power P, ensuring the penalties do not dominate the objective. The superscript asterisk (∗) denotes the
optimal solution and dagger (†) denotes the current solution candidate in the optimization loop.

3.1. CCD Procedures

The CCD methodology in this study involves two-stages: the first (ROSCO) stage employs a simul-
taneous CCD formulation illustrated in Fig. 8, while the second (OLOC) stage begins near the optimal
plant design identified by the ROSCO stage and uses a nested CCD formulation illustrated in Fig. 9. The
superscript asterisk (∗) denotes the optimal solution, dagger (†) denotes the current solution candidate in

13



zp,lb, zp,ub ∀k, vk

z∗p, LCOE
∗,

AEP∗, Cost∗
Sampling for

Multistart
∀j, zp0,j

z∗p,j
Gradient-Based

Optimizer
z†p,j z†p,j

P ∗
(
z†p,j , vk

)

AEP∗
j

AEP =∑

k

f (vk)P
∗
(
z†p,j , vk

)
AEPj

Cost∗j DFSM for Cost Costj

LCOE∗
j LCOE

(
z†p,j

)
LCOE

DFSM for Power

Based On ROSCO

for z†p,j , vk

Figure 8: First (ROSCO) stage of the two-stage CCD optimization process, where DFSM predicts ROSCO controller responses to
compute AEP.

the outer-loop optimization, and double dagger (‡) denotes the current solution candidate in the inner-loop
optimization problem.

In the ROSCO stage illustrated in Fig. 8, the DFSM trained with the ROSCO controller responses is
used to determine the optimal plant design and control scheme that minimizes LCOE. During this stage the
ROSCO controller parameters remain fixed to the reference turbine specification. This stage serves only
to generate the initial plant design points passed to the OLOC stage optimization problem. Specifically,
the plant design vector zp is updated within the feasible region that satisfies the tower stress constraint,
and the power outputs for given wind profiles, which are required to compute AEP, are also determined
by the trained DFSM. Once convergence is reached, the optimal plant design z∗p is obtained along with
the corresponding LCOE∗, AEP∗, and Cost∗ values. The 40 initial guesses are generated by a space-filling
sampling procedure (see “sampling for multistart” block in Fig. 8), which scatters starting point for gradient-
based optimizer across feasible region and increases the chance of locating the global optimum. The solution
to the problem of this stage (see “gradient-based optimizer” block and elements underneath) fed to the
second (OLOC) stage. Optimizing plant design variable subject to dynamic constraints inherently achieve
co-design of plant and control scheme without spending significant computational expenses since the DFSM
is trained to emulate the behavior of ROSCO. This first stage leverages this computational advantage in
exploring global design space. To be specific, the optimal plant design obtained in this stage corresponds
to the best plant in the context of requiring use of ROSCO. However, this optimal plant design does not
guarantee the optimality when optimized with OLOC due to greater control signal flexibility. Notably,
using DFSM at this stage allows all 40 initial guesses to be optimized in under 10 minutes.

In the OLOC stage, shown in Fig. 9, we adopted a nested CCD formulation. The outer-loop (Fig. 9(a))
mirrors the problem structure of the ROSCO stage, but its “Power” block now calls an inner-loop optimal-
control problem instead of calling the ROSCO-based DFSM. This inner loop (Fig. 9(b)) solves an OLOC
problem with the DFSM dynamics, given in Eq. (4). For each wind profile vk, the inner-loop returns optimal
state (simulation results) and control (optimal solution) trajectories, and time-averaged power passed to
outer-loop problem to compute AEP using Weibull distribution, which in turn is used to calculate LCOE,
the outer-loop objective function. Among all optimized solutions, the design delivering the lowest LCOE
is selected as the final optimal solution. The use of OLOC enables to fully exploit the dynamic regulations
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Figure 9: Second (OLOC) stage of the two-stage CCD optimization process: (a) Outer-loop optimization problem, and (b) Inner-
loop optimization problem that fully utilizes OLOC’s flexibility.

beyond what ROSCO can provide. While the dynamic response is provided by the trained DFSM, the
control signal regulation is provided fully independently via OLOC solver in the inner-loop problem.

4. Results

This section presents the outcomes of several design optimization scenarios and control design methods
applied to the overall wind turbine system. The analysis of these studies focuses on comparing different
design strategies and their influence on key performance metrics and parameters. In addition, optimal design
results are further analyzed through sensitivity studies, and comparison of control design approaches.

4.1. Results of Various Optimization Scenarios and Cases

In this section, we examine three distinct optimization approaches: (1) Baseline, (2) Sequential, and
(3) CCD scenarios. In the Baseline scenario, the plant design remains fixed at the IEA 15 MW reference
turbine specification, after which either a single ROSCO stage or a two-stage ROSCO–OLOC approach
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Table 1: Comparison of three design strategies (Baseline, Sequential, and CCD) and two control design strategies (ROSCO and
OLOC) under varying tower stress constraints (80–120 MPa).

Scenario / Constr. (MPa) Control LCOE AEP Cost lhub Dtop bbase btop Drotor

Baseline (σ ≤ 103)
ROSCO 86.97 74.97 65.20 150.0 6.50 0.041 0.021 240.0
OLOC 84.72 76.96 65.20 150.0 6.50 0.041 0.021 240.0

Sequential: σ ≤ 103
ROSCO 86.40 75.14 64.92 155.0 5.88 0.029 0.025 240.0
OLOC 84.39 76.93 64.92 155.0 5.88 0.029 0.025 240.0

CCD: σ ≤ 80
ROSCO 86.99 75.19 65.41 155.0 6.72 0.036 0.025 240.0
OLOC 84.74 77.13 65.36 155.0 6.79 0.037 0.025 240.0

CCD: σ ≤ 103
ROSCO 86.40 75.14 64.92 155.0 5.88 0.029 0.025 240.0
OLOC 84.15 77.23 64.99 155.0 6.09 0.031 0.024 240.0

CCD: σ ≤ 120
ROSCO 86.24 75.12 64.71 155.0 5.43 0.025 0.025 240.0
OLOC 83.85 77.26 64.79 155.0 5.63 0.027 0.025 240.0

(hereafter “OLOC”) is applied for control design (see Sect. 3.1 for details). In the Sequential scenario,
the plant design is first optimized to minimize LCOE using the DFSM trained with ROSCO controller
responses, followed by a subsequent optimization using either the ROSCO or OLOC control design. Finally
in the CCD scenario, both plant and control designs are optimized concurrently via either the “ROSCO” or
“OLOC” CCD approach, as illustrated in Figs. 8 and 9, respectively.

Table 1 summarizes the results of various scenarios, while Fig. 10 offers a visual comparison. All data
are normalized with respect to the Baseline ROSCO case. The CCD scenarios focus on the influence of
different maximum tower stress constraints on design outcomes and their performances. In this study, von
Mises stress constraints computed using all force and moment components are employed at the top and
base sections of the tower. The maximum allowable tower stress is set to 80, 103, or 120 MPa. In the
Baseline ROSCO case, where the ROSCO controller response was used, the maximum tower stress reached
103 MPa. Consequently, this work investigates how the design changes when the tower stress constraint is
tightened to 80 MPa or relaxed to 120 MPa.

Figure 10(a) illustrates the relative values of AEP, Cost, and LCOE compared to those of Baseline
ROSCO case. Figure 10(b) presents the relative changes in plant design variables with respect to the same
baseline case. The OLOC cases are represented by square symbols connected with solid lines, while the
ROSCO cases are depicted by dots connected with dash-dotted lines.

In every scenario, the OLOC cases consistently produce a lower LCOE, and higher AEP compared to
the ROSCO cases. This outcome is expected because ROSCO functions as a CLC with limited tunability,
whereas OLOC can freely adjust the control trajectories, provided that the constraints and system dynamics
are satisfied. Despite a consistent decrease in LCOE and an increase in AEP, the overall cost does not
necessarily decrease. As shown in Fig. 10(a), in the last two CCD cases, the cost of the OLOC designs
is actually higher than that of the ROSCO cases. This is due to the fact that, as illustrated in Fig. 10(b),
the OLOC results feature larger tower base thicknesses and tower-top diameters. However, the key insight
is that although the cost is slightly higher in these OLOC cases, the resulting LCOE is still lower. This
demonstrates the benefit of using OLOC: by fully leveraging the coupling between plant and controller
design, the AEP is significantly improved, while the increase in cost remains relatively small. As a result,
the LCOE is reduced, highlighting one of the key advantages of using OLOC in CCD to fully capitalize on
the potential of plant-controller co-design.

Under the consistent maximum tower stress constraint (σ ≤ 103 MPa), the CCD scenario achieves the
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Figure 10: Impact of optimization workflow (Sequential, CCD) and control design strategies (ROSCO, OLOC) on performance and
plant design. All quantities are normalized to the Baseline ROSCO case to highlight relative changes. (a) AEP, Cost, and LCOE
comparison for five scenarios: Baseline, Sequential, and CCD with varied tower stress constraints. Dot symbols with dash-dotted
lines denote ROSCO, while square symbols with solid lines denote OLOC. (b) Key plant design variables compared for the same
five scenarios, using the same symbols and lines.

lowest LCOE, followed by the Sequential and then the Baseline scenario. This trend holds for both ROSCO
and OLOC control design cases, and can be attributed to the fact that CCD scenario concurrently optimizes
the plant and control designs, exploiting their co-design synergy, while the Sequential scenario optimizes
both elements separately, without leveraging the full benefits of co-design.

In the CCD scenarios, relaxing the maximum allowable tower stress from 103 MPa to 120 MPa further
reduces LCOE. The optimized plant designs incorporate smaller tower diameters and thinner tower walls,
thereby lowering overall costs. These findings highlight the profound influence of tower stress limits on
CCD optimization, underscoring the importance of such constraints in wind turbine design.

Furthermore, in all examined cases, except for the Baseline scenario, where the plant design is fixed,
both the hub height and rotor diameter reach their upper bounds. This outcome arises because a larger rotor
diameter increases aerodynamic torque, enabling higher power generation, and increasing the hub height
shifts the Weibull distribution toward greater AEP. This result aligns closely with the sensitivities shown
in Fig. 4, where tower length and rotor diameter exert the strongest influence on the Cost/Power metric.
Although here the optimal design for these two variables converges to their upper bounds, if the ranges of
these design variables were expanded or additional constraints (e.g., buckling) were incorporated in future
studies, these parameters might not always reach their upper bounds. As this study serves as a preliminary
exploration, it does not encompass the full spectrum of potential constraints.

Finally, to satisfy the tower stress constraints at the tower top section, two key parameters: tower top
diameter (Dtop) and tower top thickness (btop), are primarily adjusted during optimization. The results show
a tendency to increase the top thickness of the tower first, as it is generally less expensive than enlarging
the tower diameter. Only if necessary does the design expand the diameter of the tower. This result is also
consistent with the sensitivities shown in Fig. 4, where, between btop and Dtop, the sensitivity of btop on σtop
is about half that of Dtop, while its sensitivity to Cost is only about one-fifth of that of Dtop. Meanwhile, to
satisfy the tower stress constraints at the base, the tower base diameter is fixed at 10 m, so the wall thickness
is adjusted accordingly to minimize LCOE while still meeting stress-related design requirements.

Figure 11 presents tower designs for various design optimization scenarios, including zoomed-in views

17



Figure 11: Side view of optimal tower geometry evolution across varied design scenarios. Solid profiles show the outer and
inner diameters of the tower for five optimized designs: Baseline, Sequential, and CCD with varied tower stress constraints. All
optimized towers (except Baseline) approach the upper height limit to maximize energy production. Tighter stress constraint leads
to thicker tower section and larger diameters.

of the top and bottom sections. Notably, tower designs from all cases except the baseline reach the upper
bound of tower height. Additionally, reducing the maximum allowable tower stress (tightening the stress
constraints) results in towers with larger outer diameters and thicker base and top sections.

Compared with the sequential design process, CCD fully leverages OLOC’s ability to reshape rotor
torque and tower-top moments during the design search. Because the controller is optimized together with
the plant, it can actively attenuate peak fore-aft loads, allowing the optimizer to trade off wall thickness
against more aggressive control actions to maximize power, while satisfying the prescribed stress concen-
trations, as shown in Fig. 10(b). Sequential design lacks this synergy. The tower is sized with limited
knowledge and fixed controller first, so the tower thickness cannot be relaxed accounting for the possibility
of aggressive control in attenuating fore-aft loads. This cooperative load-sharing mechanism explains the
observed cost gap and highlights the unique benefit of simultaneous plant and controller co-design.

4.2. Sensitivity Study

It is important to understand how a change to one plant design variable affects other design variables and
performance metrics. The sensitivity analysis presented here helps us understand the interdependencies and
impacts among these variables. An optimal design obtained from the CCD-ROSCO case with a maximum
stress constraint of 103 MPa is selected for sensitivity analysis, as detailed in Tab. 2. In each column of the
table, one plant design variable is adjusted from its optimal value by approximately 10% of its range. Then,
the resulting changes in the optimal values of the other four plant design variables and performance metrics,
such as AEP, Cost, and LCOE, are presented.

Each entry at row i and column j reports the percentage change in the quantity listed in row i caused by
a small percentage perturbation in the design variable in column j. For every column, we computed:

S i j =

yi

(
z j

p

)
−yi

(
zp

)
yi

(
zp

)
z j

p−zp
zp

× 100%, (11)

where zp is the baseline vector of five plant design variables, z j
p is the same vector with a small perturbation

applied to its j-th component, and yi is the variable or performance metric in the i-th row. This normalization
removes bias from differences in absolute scale, ensuring fair comparison between variables with different
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Table 2: Sensitivity analysis of wind turbine plant design variables, demonstrating their interdependencies.

lhub Dtop bbase btop Drotor

lhub 0+ 0+ 0+ 0+

Dtop 0.44 -0.18 -55.97 -160.12
bbase 148.55 0.58 0+ 112.33
btop 0+ -151.4 0+ 355.68

Drotor 0+ 0+ 0+ 0+

LCOE -6.59 1.29 0.60 -0.73 -83.20
AEP 10.98 -0.26 0.06 0.299 89.80
Cost 4.78 0.99 0.65 -0.58 7.40

scales. The sign of S i j indicates the direction of influence, while its magnitude measures the coupling
strength. A value of 0+ means the row variable has already reached its upper bound, and therefore does
not respond to the perturbation. A concrete example clarifies the table’s meaning: the entry −160.12 in the
second row, last column of Tab. 2 implies that a ±10% change in rotor diameter Drotor induces a ∓16.0%
change in tower-top diameter Dtop, because −160.12 × 10% = −16.01%.

As shown in Tab. 2, the analysis demonstrates that both hub height (lhub) and rotor diameter (Drotor)
significantly influence LCOE. Increasing these parameters leads to higher AEP, as the additional energy
production offsets the increased Cost associated with taller and thicker towers, thereby reducing overall
LCOE. Additionally, increasing the tower top thickness (btop) results in a small decrease in LCOE. This
reduction is achieved by decreasing the tower top diameter (Dtop) while maintaining compliance with stress
constraints of the tower. Consequently, the total Cost decreases, and there is a marginal increase in AEP.
This trend aligns with the CCD results presented in Tab. 1, where btop generally converges toward its upper
bound.

Moreover, there is a strong correlation between Drotor and other parameters, including Dtop, bbase, and
btop. As Drotor increases, the tower must become thicker to satisfy stress constraints. At the tower base,
where the diameter is fixed at 10 m, only the thickness (bbase) can be adjusted. At the tower top, both btop
and Dtop can be adjusted. The results indicate a preference for increasing btop first, as this is generally less
costly than increasing Dtop. Consequently, Dtop decreases while btop and bbase increase. It is important to
note that if the ranges of these design variables were expanded or additional constraints (e.g., buckling)
were considered in future studies, these parameters might not reach their upper bounds.

Lastly, Tab. 2 shows that raising lhub, btop, and Drotor lowers LCOE. One might therefore wonder why
the CCD-ROSCO case with σ ≤ 103 MPa in Tab. 1 did not converge to larger values of these variables
for achieving better LCOE. The reason is that all three had already reached their prescribed upper bounds.
Expanding those bounds or adding additional, more realistic, constraints would wident the design space and
permit exploration of alternative configurations that remain structurally feasible. These sensitivity results
are presented to provide a more comprehensive understanding and explore potential interactions among the
design variables. Although this study used the CCD case with a maximum stress limit of 103 MPa, different
cases or the introduction of more realistic constraints are expected to produce varying design outcomes
accordingly.

Figure 12 illustrates the LCOE, Cost, and AEP performance responses, alongside tower stress levels,
across the design space for tower top thickness (btop) and tower top diameter (Dtop). Figure 13 presents the
same performance responses and tower stress levels across the design space for tower base thickness (bbase)
and hub height (lhub). In these figures, dotted lines represent stress isolines, while solid lines denote iso-
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Figure 12: Effect of tower top geometry variable subspace (btop and Dtop) on key performance metrics (LCOE, Cost, and AEP). All
other plant design variables are fixed. Black square marker represents the ROSCO stage optimal solution. Dotted lines represent
stress isolines, while solid lines denote isolines for each performance metric. (a) LCOE, (b) Cost, (c) AEP contours.
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Figure 13: Effect of tower base wall thickness and hub height variable subspace (bbase and lhub) on key performance metrics (LCOE,
Cost, and AEP). All other plant design variables are fixed. Black square marker represents the ROSCO stage optimal solution.
Dotted lines represent stress isolines, while solid lines denote isolines for each performance metric. (a) LCOE, (b) Cost, (c) AEP
contours.

lines for each performance metric. The black square marker highlights the optimal CCD solution achieved
through ROSCO control strategy. In these plots, design space variables (btop and Dtop for Fig. 12; bbase and
lhub for Fig. 13) are varied within defined ranges, while other plant parameters are fixed at the CCD case
design solution with a maximum stress constraint of 80MPa, as detailed in Tab. 1.

Variations in tower top thickness (btop) and tower top diameter (Dtop) have ignorable amount of impact
on AEP, and even this small impact is likely due to inherent simulation noise generated by OpenFAST.
However, these parameters significantly influence stress, Cost, and LCOE. The optimal solution (indicated
by the black square marker) resides within a region where the maximum tower stress constraint of 80 MPa
is satisfied and LCOE is minimized. Increasing the maximum allowable tower stress allows for a reduction
in LCOE by employing thinner tower walls.

The wiggles in the LCOE and Cost isolines in Figs. 12 and 13 arise from noisy, partly discrete, low-
sensitivity nature of the WISDEM cost model, which introduces step changes in the cost estimate and
produces locally non-monotonic variations. For example, as shown in Fig. 12(b), when the tower-top di-
ameter is held constant, small changes in tower wall thickness (x-axis) yield only minor variations in Cost.
Conversely, slight variations in tower diameter can trigger a sudden jump in Cost because of the discrete
sizing of internal components and parts. In contrast, the AEP isolines remain smooth because they depend
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Figure 14: Comparison of power curves for the baseline tower using OLOC (solid line) and ROSCO (dashed line).

continuously on aerodynamic and structural physics. Although Cost and, therefore, LCOE exhibits minor
wiggles, their impact on the overall trend and on the effectiveness of gradient-based optimizers is negligible.

4.3. ROSCO vs OLOC Comparison

As presented in Tab. 1, the OLOC design approach demonstrates a notable reduction in LCOE and
an increase in AEP compared to the ROSCO controller-based approach. The observed enhancement in
AEP can be attributed to the ability of OLOC to modify the power curve derived from DFSM. Figure 14
illustrates the power curves for the baseline tower, comparing the results obtained using OLOC and ROSCO
under identical constraints. Notably, the power curve generated by OLOC consistently outperforms that of
ROSCO. Specifically, as shown in the first two rows of Tab. 1, the application of OLOC increases AEP from
74.97 to 76.96 MWh. Since the Cost remains unchanged between the two cases, this improvement in AEP
translates directly to a reduction in LCOE from 86.97 to 84.72 USD/MWh.

The observed increase in power output and, consequently, the AEP, can be attributed to the control
strategies and corresponding system states at different wind speeds, as depicted in Fig. 7. Figure 15 demon-
strates the performance of the baseline tower under four distinct DLCs, comparing the results achieved with
the OLOC- and ROSCO-based control strategies. In this figure, the outcomes from the OLOC simulation
are represented by thick solid lines, while those from the ROSCO controller are depicted as thin solid lines.

Figure 15 compares the OLOC and ROSCO control strategies on wind turbine performance under vary-
ing wind speeds. The bold solid lines represent results obtained using the OLOC control strategy, while the
thin lines present results from the ROSCO control strategy. This figure demonstrates the impact of different
controllers on turbine performance in varying wind conditions.

In Fig. 15(a), the rotor rotational velocity (ω) time histories are plotted. Initially, both the OLOC and
ROSCO scenarios start with the same values, corresponding to the nominal steady-state value obtained by
OpenFAST linearization. However, over time, ROSCO tends to maintain a higher rotational velocity com-
pared to OLOC’s regulation, primarily due to CLC’s limitations in satisfying path constraints. Figure 15(b)
displays the generator torque (Tgen), where the OLOC results maintain slightly higher values. Figure 15(c)
illustrates the collective blade pitch angle (β), showing that the two control approaches do not exhibit signif-
icant differences in blade pitch control. In Fig. 15(d), the normalized generator output power (Pgen/15 MW)
is depicted. Here, the OLOC scenario exhibits slightly higher power levels, leading to higher AEP compared
to the ROSCO scenario. As observed, the increased power achieved via the OLOC strategy is accompanied
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Figure 15: Comparison of OLOC and ROSCO control strategies on wind turbine performance under varying wind speeds. (a)
Rotor rotational velocity (ω). (b) Generator torque (Tgen). (c) Blade pitch angle (β). (d) Normalized generator power output (Pgen).

by slightly higher generator torque and lower rotor speed compared to the ROSCO CLC approach.

5. Conclusion

This article introduces a comprehensive CCD framework for wind turbine systems, leveraging nonlinear
DFSMs developed through OpenFAST linearization and data-driven approaches. The developed DFSMs
provide state derivatives (ξ̇) and system output responses (y) across a wide range of plant and control design
parameters, and they are validated against direct simulation responses. The research findings demonstrate
that the CCD approach offers substantial benefits over traditional Sequential methodologies by exploiting
the co-design synergies between plant and control domains. Notably, the proposed CCD framework enables
a significant reduction in LCOE by finding optimally balancing enhancements in AEP and reductions Cost,
while satisfying constraints related to design and physical limits, as well as dynamic governing equations.
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Key results highlight the superior performance of the OLOC-based CCD optimization compared to CLC
based on ROSCO. This superiority is driven by OLOC’s ability to dynamically adjust control trajectories
and leverage plant-control synergies. The framework successfully balances competing objectives, such as
cost associated with plant design parameters, energy production across various wind profiles, and structural
integrity under varying stress constraints. These findings underscore the critical role of tower stress limits
in guiding design trade-offs.

The sensitivity analysis reveals interdependencies among design variables and performance metrics.
Specifically, hub height (lhub) and rotor diameter (Drotor) have a pivotal influence on AEP, leading to lower
LCOE. Additionally, the study highlights nuanced interactions between various parameters. Increasing
tower top thickness (btop) results in reduced optimal tower top diameter (Dtop) while maintaining compliance
with stress constraints (σbase and σtop), ultimately lowering Cost. These interdependencies provide valuable
guidance for exploring design trade-offs in future studies and demonstrate the essential role of such analyses
in refining the optimization process.

Another significant contribution of this study is the sparsity analysis, which offers valuable insights into
the relationships between input variables (such as states, controls, and wind speed) and output variables (in-
cluding system responses, state derivatives, and tower stresses), ultimately linking them to design variables.
The analysis highlights the relative importance of each input variable in shaping specific system responses,
thereby guiding critical areas of focus in the optimization process. It reveals that blade pitch angle and
generator torque significantly influence key outputs, such as aerodynamic force, aerodynamic torque, and
side-to-side moments. Additionally, certain outputs, such as fore-aft motion and aerodynamic moments, are
highly sensitive to certain inputs, such as wind speed and blade pitch angle. Notably, the fore-aft moment
emerged as the dominant contributor to tower stresses at both the top and base sections. These findings
emphasize the importance of identifying influential relationships, enabling targeted adjustments and refined
CCD problem formulation.

As the findings of this study are intended for the early-stage exploration phase of wind turbine devel-
opment, subsequent research focused on later-stage development should broaden the scope of constraints,
incorporate higher-fidelity models, and utilize comprehensive and tailored sets of DLCs to better address
complex, real-world scenarios. Expanding parameter bounds and integrating additional design considera-
tions, such as buckling constraints, will offer deeper insights into the practical applications and limitations
of the CCD framework. By establishing a robust foundation for wind turbine design, this study highlights
the significant potential of CCD to drive system-level optimization and innovation in renewable energy
systems.
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