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 a b s t r a c t

Floating offshore wind turbine (FOWT) systems involve several coupled physical analysis disciplines, including 
aeroelasticity, multi-body structural dynamics, hydrodynamics, and controls. Conventionally, physical structure 
(plant) and control design decisions are treated as two separate problems, and generally, control design is per-
formed after the plant design is complete. However, this sequential design approach cannot fully capitalize upon 
the synergy between plant and control design decisions. These conventional design practices produce suboptimal 
designs, especially in cases with strong coupling between plant and control design decisions. Control co-design 
(CCD) is a holistic design approach that accounts fully for plant-control design coupling by optimizing these 
decisions simultaneously. CCD is especially advantageous for system design problems with complex interactions 
between physics disciplines, which is the case for FOWT systems. This paper presents and demonstrates a nested 
CCD approach using open-loop optimal control (OLOC) for a simplified reduced-order model that simulates FOWT 
dynamic behavior. This simplified model is helpful for optimization studies due to its computational efficiency, 
but is still sufficiently rich enough to capture important multidisciplinary physics couplings and plant-control de-
sign coupling associated with a horizontal-axis FOWT system with a spar buoy floating platform. The CCD result 
shows an improvement in the objective function, annual energy production (AEP), compared to the baseline de-
sign by more than eleven percent. Optimization studies at this fidelity level can provide system design engineers 
with insights into design directions that leverage design coupling to improve performance. These studies also 
provide a template for future more detailed turbine CCD optimization studies that utilize higher fidelity models 
and design representations.

1.  Introduction

Over the last decade, offshore wind energy has gained significant at-
tention as an environmentally friendly and cost-effective energy source. 
Offshore wind resources are stronger and more consistent than their 
onshore counterparts, while exhibiting fewer issues, such as terrain-
induced shear effects, acoustic noise, visual impact, size limits, and 
interference with humans and wildlife. However, many ideal offshore 
wind locations have water depths beyond 45m, rendering monopile 
foundations installed directly on the sea bed unsuitable (Bhattacharya, 
2014). Therefore, there is a growing need for technical advancements in 
floating offshore wind turbine (FOWT) systems to harness the profound 
energy potential in deep water regions.

FOWTs are still in their early stages of development and have yet 
to be commercially deployed. To facilitate large-scale commercializa-
tion of the FOWTs, several challenges must be addressed, which can 
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be mitigated through innovative design discoveries and optimization 
strategies that leverage inherent complex design couplings and signif-
icantly reduce energy costs. For example, advanced control strategies 
can help enhance energy production while simultaneously protecting 
the turbine system from motions induced by hydrodynamic interac-
tions with the floating platform. Furthermore, FOWT systems consist 
of numerous components with multidisciplinary interactions, including 
hydrostatics, hydrodynamics, mooring dynamics, structural dynamics, 
aerodynamics, and controls, complicating the design process. Thus, ad-
vancing FOWT performance requires advanced multidisciplinary design 
methodologies.

This article presents a study of the integrated physical (plant) and 
control design of a spar buoy-based horizontal-axis FOWT system us-
ing a model comprised of a set of simplified governing physics for-
mulations. The FOWT model development is intended for use with in-
tegrated physical and control design optimization (often referred to 
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\begin {align}\label {eq:dynamics} \begin {bmatrix} M_{\text {sys}}+\bar {A} \end {bmatrix}_{4\times 4} \begin {bmatrix} \dot {v}_x\\ \dot {v}_z\\ \dot {\omega }_y\\ \dot {\Omega } \end {bmatrix}_{4\times 1} &+ \begin {bmatrix} \tilde {S} M_{\text {sys}}+\bar {C}_A \end {bmatrix}_{4\times 4} \begin {bmatrix} v_x\\ v_z\\ \omega _y\\ \Omega \end {bmatrix}_{4\times 1}\nonumber \\ &= \begin {bmatrix} F^m_{2\times 1}\\ M^m_{1\times 1}\\ 0 \end {bmatrix}_{4\times 1} + \begin {bmatrix} F_{2 \times 1}\\ M_{1\times 1}\\ \tau _{\text {a}} - \tau _{\text {g}} \end {bmatrix}_{4\times 1},\end {align}
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\begin {align}\label {eq:S-tilde} \tilde {S}= \begin {bmatrix} 0 & \omega _y & 0 & 0\\ -\omega _y & 0 & 0 & 0\\ v_z & -v_x & 0 & 0\\ 0 & 0 & 0 & 0 \end {bmatrix}.\end {align}


$M_{\text {sys}}$


\begin {align}\label {eq:mass-matrix} M_{\text {sys}}= \begin {bmatrix} m_{\text {T}} & 0 & M_{13} & 0\\ 0 & m_{\text {T}} & -M_{26} & 0\\ M_{13} & -M_{26} & M_{55} & 0\\ 0 & 0 & 0 & I_{\text {r}x} \end {bmatrix},\end {align}


$m_{\text {T}}$
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\begin {align}\begin {array}{l}\label {eq:mass-components} m_{\text {T}}=m_{\text {p}}+m_{\text {t}}+m_{\text {nc}}+m_{\text {r}} \\[6pt] M_{13}=D_{\text {r}}(m_{\text {r}}+m_{\text {nc}})+m_{\text {t}} D_{\text {t}} \\[6pt] M_{26}=d_{\text {nc}} m_{\text {nc}}-d_{\text {r}} m_{\text {r}} \\[6pt] M_{55}=I_{\text {T}_y}+m_{\text {r}}(D_{\text {r}}^2+d_{\text {r}}^2)+m_{\text {nc}}(D_{\text {r}}^2+d_{\text {nc}}^2)+D_{\text {t}}^2m_{\text {t}} \\[6pt] I_{\text {T}_y}=I_{\text {p}y}+I_{\text {t}y}+I_{\text {nc}y}+I_{\text {r}y}, \end {array}\end {align}
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\begin {align}\bar {A} &= \begin {bmatrix} A_{11} & 0 & A_{13} & 0\\ 0 & A_{22} & 0 & 0\\ A_{13} & 0 & A_{33} & 0\\ 0 & 0 & 0 & 0 \end {bmatrix}, \label {eq:hydro-added-mass-matrix} \\ \bar {C}_A &= \begin {bmatrix} 0 & 0 & A_{11}v_z & 0\\ 0 & 0 & -A_{11}v_x & 0\\ -A_{11}v_z & A_{11}v_x & 0 & 0 \end {bmatrix}. \label {eq:hydro-coriolis-centripetal-matrix}\end {align}


\begin {align}\label {eq:hydro-added-mass-components} A_{11}&=C_{\text {am}}\rho V_{\text {d}} \nonumber \\ A_{22}&=C_{\text {am}}\left (\frac {1}{12}\rho \pi d_1^3\right )\nonumber \\ A_{13}&=A_{11}(a_{\text {cv}}-a_{\text {pf}})\nonumber \\ A_{33}&=C_{\text {am}} I_{\text {add}},\end {align}
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\begin {align}\begin {bmatrix}\label {eq:gravity-force-moment} F^{\mathrm {m}}_{2\times 1}\\[6pt] M^{\mathrm {m}}_{1\times 1}\\[6pt] 0 \end {bmatrix}_{4\times 1}&= \begin {bmatrix} m_Tg \sin {\theta _p}\\[6pt] -m_Tg \cos {\theta _p}\\[6pt] g \sin {\theta _p}\left ( D_r(m_{nc}+m_r)+D_tm_t \right )+g \cos {\theta _p}(d_{nc}m_{nc}-d_rm_r)\\ 0 \end {bmatrix},\end {align}


\begin {align}\begin {bmatrix}\label {eq:external-force} F_{2 \times 1}\\[6pt] M_{1\times 1}\\[6pt] \tau _{\mathrm {a}}-\tau _{\mathrm {g}} \end {bmatrix}_{4\times 1}&= \begin {bmatrix} F_{2\times 1}^{\mathrm {hs}} + F_{2\times 1}^{\mathrm {a}} + F_{2\times 1}^{\mathrm {moor}} + F_{2\times 1}^{\mathrm {hd}}\\[6pt] M_{1\times 1}^{\mathrm {hs}} + M_{1\times 1}^{\mathrm {a}} + M_{1\times 1}^{\mathrm {moor}} + M_{1\times 1}^{\mathrm {hd}}\\[6pt] \tau _{\mathrm {a}}-\tau _{\mathrm {g}} \end {bmatrix},\end {align}
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\begin {equation}\left \{ \begin {array}{@{}l@{}} l = L_o - \dfrac {F_{\mathrm {V}}}{w} + \dfrac {L_o F_{\mathrm {H}}}{EA} + \dfrac {F_{\mathrm {H}}}{w} \sinh ^{-1} \left ( \dfrac {F_{\mathrm {V}}}{F_{\mathrm {H}}} \right ) \\[6pt] h = \dfrac {1}{w} \left ( \sqrt {F_{\mathrm {H}}^2 + F_{\mathrm {V}}^2} - F_{\mathrm {H}} + \dfrac {F_{\mathrm {V}}^2}{2EA} \right ) \end {array} \right . \label {eq:rest}\end {equation}


\begin {equation}\left \{ \begin {array}{@{}l@{}} l = \dfrac {F_{\mathrm {H}} L_0}{EA} + \dfrac {F_{\mathrm {H}} L_0}{W} \left [ \sinh ^{-1} \left (\dfrac {F_{\mathrm {V}}}{F_{\mathrm {H}}} \right ) - \sinh ^{-1} \left (\dfrac {F_{\mathrm {V}} - W}{F_{\mathrm {H}}} \right ) \right ] \\ \\[-6pt] h = \dfrac {W L_0}{EA} \left ( \dfrac {F_{\mathrm {V}}}{W} - 0.5 \right ) + \dfrac {F_{\mathrm {H}} L_0}{W} \left [ \sqrt {1 + \left (\dfrac {F_{\mathrm {V}}}{F_{\mathrm {H}}}\right )^2} - \sqrt {1 + \left (\dfrac {F_{\mathrm {V}} - W}{F_{\mathrm {H}}} \right )^2} \right ] \end {array} \right . \label {eq:sus}\end {equation}
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${\bf x}_{\text {t}} = [ t_{\text {tip}},\; d_{\text {tip}},\; t_{\text {base}},\; l ]^{{\sf T}}$
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\begin {align}\label {eq:aep} \text {AEP} = 8760 \int _{0}^{\infty } P_{\text {out}}\left (U\right ) f\left (\bar {U}\right ) \mathrm {d}\bar {U} \approx 8760 \sum _{j=1}^{N_{\text {B}}} P_{\text {out}} \left ({u}_j\right ) P\left (\bar {u}_j\right ),\end {align}
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\begin {align}\label {eq:weibull-dist} & f\left (\bar {U}\right )=\frac {k}{c}\left (\frac {\bar {U}}{c}\right )^{k-1}\exp \left (-\left (\frac {\bar {U}}{c}\right )^k\right ),\end {align}
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\begin {align}\label {eq:wind-power-law} u = u\left ( \bar {u},l \right )=\bar {u}\left (\frac {l+z_{\text {base}}}{l_{\text {baseline}}+z_{\text {base}}}\right )^{0.2}.\end {align}
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\begin {align}J_{\text {out}} &= -8,760 \sum _{j=1}^{N_B} P\left (\bar {u}\right ) P_{\text {out}} \left (u\right ) = -8,760\cdot E_{\text {in}}\label {eq:J-out},\\ \text {where: } E_{\text {in}} &= \sum _{j=1}^{N_B} P\left (\bar {u}\right ) P_{\text {out}}\left (u\right ).\label {eq:E-in}\end {align}
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as a control co-design, CCD), which utilizes coupling between plant 
and control design variables to better exploit the properties of the 
combined plant-control design space. The design problem is simple 
enough to directly demonstrate how FOWT CCD can be formulated 
but contains enough richness to explore important physics and design
couplings.

Direct optimal control methods have proven particularly effective in 
the flexible exploration of new control strategies while accounting for 
the realities of physical system design, such as design coupling and fail-
ure modes (Allison et al., 2014; Allison and Herber, 2014; Böhme and 
Frank, 2017; Herber and Allison, 2019; Bayat and Allison, 2023b,a). Di-
rect transcription is a class of direct optimal control methods that over-
comes many of the shortcomings of conventional shooting-based opti-
mal control methods (Betts, 1998) but requires that optimization solvers 
have direct access to the time derivative function. Instead of treating 
system dynamics as a black box, direct transcription capitalizes on the 
problem structure inherent to continuous dynamic system optimization 
problems to enhance numerical robustness and efficiency. Here, in this 
study, we use pseudospectral-based direct transcription method (Ross 
and Karpenko, 2012; Patterson and Rao, 2014; Garg et al., 2009) for 
obtaining optimal control solutions.

Engineered systems often rely on active control systems, requiring 
engineers to make design decisions on both physical (plant) and control 
systems. A bidirectional coupling between plant and control designs ex-
ists when changes in plant design influence optimal control strategies 
and changes in control design influences optimal plant design decisions. 
Despite this interdependence, sequential design procedures remain de 
facto standard in industry. This persistence is largely due to the divi-
sion of responsibilities among specialized engineering teams, such as 
those focused on foundations, turbines, and control systems. Addition-
ally, practical constraints, including intellectual property protection and 
limited access to detailed subsystem models (Wang et al., 2006), often 
hinder fully integrated design approaches.

Although the sequential design approach is widely used, it inherently 
limits the performance gains achievable through the concurrent opti-
mization of plant and control variables (Fathy et al., 2001). This limita-
tion has driven a growing interest in CCD (Pao et al., 2024; Sundarrajan 
et al., 2024), which has been described as a “game changer” (Garcia-
Sanz, 2019) in engineering design, particularly within renewable energy 
systems. Further exploration of CCD in this context could uncover key 
mechanisms for significant system performance improvements. If suc-
cessful, these advancements could help drive a gradual, yet inevitable, 
shift away from traditional design practices.

Here, an integrated design approach is used that fully accounts for bi-
directional plant-control design coupling and produces system-optimal 
designs, generally referred to as control co-design (CCD). The CCD opti-
mization is a class of integrated design methods that account explicitly 
for plant-control coupling to support the discovery of non-obvious sys-
tem designs that realize new performance levels (Allison et al., 2014; 
Herber and Allison, 2019; Fathy et al., 2001; Peters et al., 2009; Allison 
and Nazari, 2010; Lee et al., 2019). This coupling is managed by con-
sidering plant and control design decisions simultaneously within the 
system optimization framework.

The importance of CCD in wind energy research has gained recent 
attention (Garcia-Sanz, 2019). A holistic consideration of control and 
physical systems in a CCD framework provides significant possibilities 
of effective and cost-efficient wind turbine system design discoveries. 
The potential performance gains are more pronounced in FOWTs 
than in land-based turbines due to more complex couplings that 
arise when wind turbines are installed on floating platforms. Various 
multidisciplinary design optimization (MDO) architectures, including 
monolithic methods (Ashuri et al., 2014; Du et al., 2020) or nested 
methods (Deshmukh and Allison, 2016) are implemented to explore 
potential design advancements in wind energy systems. The results of 
these studies demonstrated that the consideration for design coupling 

provides the large advantages over designing for each disciplinary 
domain sequentially.

While previous studies have explored CCD for wind turbines, they 
have yet to investigate the potential value of applying the CCD to 
FOWTs. Fairly comprehensive CCD studies have been performed specif-
ically for land-based wind turbines but often relied on computationally-
expensive models. Due to the increased computational expenses beyond 
land-based models, many previous CCD studies on FOWTs are limited 
to non-holistic approaches. While a handful of articles present inte-
grated design approaches for FOWTs, most utilize sequential design ap-
proaches with open-loop optimal control (OLOC) or model predictive 
control (MPC). This study fills a critical gap in integrated FOWT sys-
tem design and provides an initial foundation for future studies in this
area.

In this study, we demonstrate a CCD FOWT implementation that 
utilizes a reduced-order model (ROM) that emulates the dynamic be-
haviors of a horizontal-axis FOWT installed on a spar buoy floating 
platform. The baseline design adapts specifications of the NREL 5MW 
reference wind turbine (Jonkman et al., 2009) installed on the OC3-
Hywind spar buoy platform (Jonkman, 2010). This turbine has a three-
bladed, upwind configuration, a hub height of 90m, and a rotor di-
ameter of 126m. It operates across wind speeds ranging from 3m/s to 
25m/s, with a rated rotor speed of 12.1 rpm and a rated tip speed of 
80m/s (Jonkman et al., 2009). To support this turbine in deep-water en-
vironments, the OC3-Hywind spar buoy platform was developed under 
the International Energy Agency’s Offshore Code Comparison Collabo-
ration (OC3) (Jonkman, 2010). The platform comprises a 120-m cylin-
drical structure with tapered sections designed to reduce wave loads 
near the waterline. It maintains stability through permanent and vari-
able ballast and features a mooring system to counteract external forces.

In this article, we use a nested CCD approach that accounts for 
plant-control design coupling while capitalizing on specialized solution 
strategies for direct optimal control. Importantly, established literature 
demonstrates that, for well-defined problems, both nested and simulta-
neous CCD approaches converge to the same system-optimal solution 
(Herber and Allison, 2019). The outer-loop optimization problem ex-
plores the plant design space using the covariant matrix adaptation evo-
lution strategy (CMA-ES), a gradient-free, population-based optimiza-
tion algorithm. The CMA-ES algorithm handles multi-modal responses 
efficiently, mitigating the risk of convergence to local optima. The co-
variant matrix adaptation procedure utilizes an estimation of the inverse 
Hessian for a quadratic function to further evolve sampling shape to-
ward the descent direction (Hansen et al., 2003; Hansen, 2016). The 
inner-loop OLOC problem finds the optimal state and control trajecto-
ries for a candidate plant design specified by the outer loop. The OLOC 
problem is discretized using the pseudospectral direct optimal control 
solver, GPOPS-II (Patterson and Rao, 2014), and numerically solved us-
ing the interior-point method NLP solver IPOPT (Wächter and Biegler, 
2006).

Our unique contributions presented in this study include (1) a 
demonstration of the holistic nested CCD design procedure for the FOWT 
system plant and control design variables, (2) a computationally ef-
ficient FOWT model based on reduced states and degrees-of-freedom 
(DOF) for system dynamics, including neural network-based mooring 
line dynamics, (3) implementation of CMA-ES, a gradient-free method, 
in the outer-loop plant design optimization to tackle rugged numerical 
responses induced by the inner-loop OLOC solution, and (4) analyses of 
the design solution that provide in-depth knowledge and insights into 
the coupled effects of the design parameters and the FOWT system be-
havior. Section 2 presents the problem definition, including the FOWT 
model, design variables, and objective and constraint functions. Sec-
tion 3 presents the results and analysis of two CCD case studies: (1) 
optimization of tower and control design variables and (2) optimization 
of the tower, blades, and control design variables. Finally, Section 5 
presents the concluding remarks of this study.
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2.  Problem definition

2.1.  FOWT dynamic model and plant design variables

FOWTs can utilize different floating platform types, including, but 
not limited to, spar buoy, semi-submersible, tension leg platforms 
(TLPs), and barge platforms. The studies presented here is based on 
a spar buoy platform. Because many different disciplines and compo-
nents are interacting with each other in the system, deriving detailed 
dynamical equations is complicated. In addition, as we increase the 
level of complexity, more advanced models are needed, and as a result, 
computational time can increase significantly. Simulating dynamic be-
haviors with such high complexity can be achieved using sophisticated 
aero-hydro-servo-elastic simulation tools, such as OpenFAST (Jonkman, 
2013; National Renewable Energy Laboratory, 2021), which is a modu-
lar, open-source software developed by the National Renewable Energy 
Laboratory (NREL), designed to simulate coupled dynamic responses of 
wind turbines under various environmental conditions. Working to solve 
CCD optimization problems by linking optimization solvers directly to 
simulation tools such as OpenFAST can enhance design problem fidelity, 
but presents several difficult challenges. For example, direct transcrip-
tion may not be possible to use with simulation tools that can only be run 
as a black box, necessitating the use of the more limited single shooting 
method. Recent work in the use of adaptive surrogate models for time 
derivative functions has made possible the use of black-box simulation 
tools with direct transcription, but is very limited in problem dimension 
(Deshmukh and Allison, 2017). A dynamic system model is needed that 
provides direct access for the optimization solver to the time derivative 
function. This need is addressed here by constructing a reduced-order 
FOWT model that is compatible with CCD methods based on direct tran-
scription, while providing sufficient richness and accuracy to support 
useful CCD optimization studies.

Several prior studies have developed ROMs for FOWTs, each concen-
trating on different platform types and dynamic characteristics. For ex-
ample, Lemmer (2018) created a low-order model for semi-submersible 
FOWTs that improves computational efficiency while accurately captur-
ing aero-hydro-servo-elastic interactions. Their work demonstrated the 
model’s effectiveness for guiding advanced controller designs through 
state-space representations. Similarly, Al-Solihat (2017) created a dy-
namic model tailored for FOWTs on spar buoy platforms by incorporat-
ing a rigid multi-body system approach with novel nonlinear hydrostatic 
and mooring load representations, thereby providing valuable insights 
into dynamic behavior and stability. Moreover, Bachynski (2014) in-
vestigated optimization-driven ROM approaches for TLPs, focusing on 
dynamic load analysis and enhancing system reliability under complex 
offshore conditions.

In this work, we have adopted the model published by Al-Solihat 
(2017) to obtain a spar buoy FOWT model that meets CCD optimiza-
tion study requirements. The model was validated in Al-Solihat (2017) 
through comparisons with other high-fidelity simulation tools under 
various load conditions, including wave and wind-induced forces. For 
further details on the model verification and validation, readers are re-
ferred to the simulation model development study in Ref. Al-Solihat 
(2017). A two-dimensional dynamic equation with an assumption of a 
rigid tower is introduced in Eq. (1):

[

𝑀sys + �̄�
]

4×4

⎡

⎢

⎢
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⎢

⎣
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+
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⎢
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𝐹2×1
𝑀1×1
𝜏a − 𝜏g

⎤

⎥

⎥

⎦4×1

, (1)

where 𝑀sys is the mass matrix, �̄� is the hydrodynamic added mass ma-
trix, �̄�𝐴 is the hydrodynamic Coriolis and centripetal matrix, 𝑣𝑥 and 𝑣𝑧

are the platform velocities in the surge and heave directions, respec-
tively, 𝜔𝑦 is the platform pitch rate, Ω is rotor rotational speed, 𝐹𝑚 is 
the gravitational force in the surge and heave directions, 𝑀𝑚 is the grav-
itational moment in the pitch direction, 𝐹  quantifies the external forces 
in the surge and heave directions, 𝑀 is the external moment in the pitch 
direction, 𝜏a is the aerodynamic torque, and 𝜏g is the generator torque. 
�̃� is also a matrix that is a function of 𝑣𝑥, 𝑣𝑧, and 𝜔𝑦, and is presented 
in Eq. (2):

�̃� =

⎡

⎢

⎢

⎢

⎢

⎣

0 𝜔𝑦 0 0
−𝜔𝑦 0 0 0
𝑣𝑧 −𝑣𝑥 0 0
0 0 0 0

⎤

⎥

⎥

⎥

⎥

⎦

. (2)

𝑀sys is defined in Eq. (3):

𝑀sys =

⎡

⎢

⎢

⎢

⎢

⎣

𝑚T 0 𝑀13 0
0 𝑚T −𝑀26 0

𝑀13 −𝑀26 𝑀55 0
0 0 0 𝐼r𝑥

⎤

⎥

⎥

⎥

⎥

⎦

, (3)

where 𝑚T is the total turbine mass and 𝐼r𝑥 is rotor inertia. Additional 
model parameters are defined as:
𝑚T = 𝑚p + 𝑚t + 𝑚nc + 𝑚r

𝑀13 = 𝐷r(𝑚r + 𝑚nc) + 𝑚t𝐷t

𝑀26 = 𝑑nc𝑚nc − 𝑑r𝑚r

𝑀55 = 𝐼T𝑦 + 𝑚r(𝐷2
r + 𝑑2r ) + 𝑚nc(𝐷2

r + 𝑑2nc) +𝐷2
t𝑚t

𝐼T𝑦 = 𝐼p𝑦 + 𝐼t𝑦 + 𝐼nc𝑦 + 𝐼r𝑦,

(4)

where 𝑚p is platform mass, 𝑚t is tower mass, 𝑚nc is nacelle mass, 𝑚r
is rotor mass, 𝐼p𝑦 is platform inertia, 𝐼t𝑦 is tower inertia, 𝐼nc𝑦 is nacelle 
inertia, and 𝐼r𝑦 is rotor inertia. The dynamic equation given in Eq. (1) 
is vectorized to efficiently calculate the time-domain the simulation. �̄�
and �̄�𝐴 in Eq. (1) are defined as:

�̄� =
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⎣

𝐴11 0 𝐴13 0
0 𝐴22 0 0
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, (5)

�̄�𝐴 =
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⎢
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0 0 𝐴11𝑣𝑧 0
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⎦

. (6)

The parameters used in Eqs.  (5) and (6) are defined as:
𝐴11 = 𝐶am𝜌𝑉d

𝐴22 = 𝐶am
( 1
12

𝜌𝜋𝑑31
)

𝐴13 = 𝐴11(𝑎cv − 𝑎pf)

𝐴33 = 𝐶am𝐼add, (7)

where 𝐶am is the hydrodynamic added mass coefficient, 𝜌 is water den-
sity, 𝑉d is submerged volume, 𝑑1 is the platform base diameter, 𝑎cv is the 
distance between the platform base and the submerged volume center, 
𝑎pf is distance between the platform Center of Gravity (COG) and the 
platform base, and 𝐼add is the inertia of the displaced volume.

Gravitational forces and moment are defined in Eq. (8):
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,

(8)
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Fig. 1. Schematic of the complete spar buoy-based FOWT system, including 
spar platform, mooring system, tower, generator, and rotor.

and other external forces and moments are shown in Eq. (9):
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⎢

⎢

⎢

⎣

𝐹2×1

𝑀1×1

𝜏a − 𝜏g

⎤

⎥

⎥

⎥

⎥

⎦4×1

=

⎡

⎢

⎢

⎢

⎢

⎣

𝐹 hs
2×1 + 𝐹 a

2×1 + 𝐹moor
2×1 + 𝐹 hd

2×1

𝑀hs
1×1 +𝑀a

1×1 +𝑀moor
1×1 +𝑀hd

1×1

𝜏a − 𝜏g

⎤

⎥

⎥

⎥
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, (9)

where 𝜃𝑝 is platform pitch, 𝐹 hs is the hydrostatic force, 𝐹 a is the aerody-
namic force, 𝐹moor is the mooring force, 𝐹 hd is the hydrodynamic force, 
𝑀hs is hydrostatic moment, 𝑀a is the aerodynamic moment, 𝑀moor is 
the mooring moment, and 𝑀hd is the hydrodynamic moment. These 
forces are calculated based on Al-Solihat (2017) and are not detailed 
here for brevity.

Fig. 1 shows a schematic of the complete spar buoy FOWT system, 
including all the system components considered in this study. In the 

figure, 𝑑r is the distance between the rotor COG and tower center line, 
𝑑nc is the distance between the nacelle COG and the tower center line, 
𝐷t is the distance between the tower and platform COGs, and 𝐷r is the 
distance between nacelle and platform COGs.

The complete system model presented in Fig. 1 comprised of the 
tower, spar buoy floating platform, slack mooring lines, rotor, and gen-
erator models. Fig. 2 illustrates the internal structure of the FOWT com-
ponents considered in this study. Fig. 2(a) depicts how the FOWT tower 
geometry is modeled as a tapered hollow cylinder (aspect ratio is ex-
aggerated for visualization), and Fig. 2(b) shows the internal fixed and 
variable (water) ballast structures of the spar buoy platform. Fig. 2(c) 
and (d) depict the configuration and computing algorithm for the moor-
ing system.

In this study, the mooring lines are modeled as quasi-static catenary 
cables. As discussed in Al-Solihat (2017), the forces at the fairlead (𝐹V
and 𝐹H) can be determined using the equations representing elastic cate-
nary cables. The applicable equations depend on whether the mooring 
line is fully suspended or partially resting on the seabed. When part of 
the mooring line contacts the seabed, Eq. (10) is used; otherwise, when 
the mooring line is fully suspended, Eq. (11) is applied. Here, 𝑙 and ℎ
denote the horizontal and vertical distances between the anchor and the 
fairlead, respectively, while 𝐹H and 𝐹V represent the corresponding hor-
izontal and vertical mooring forces. Additionally, 𝐿0 is the unstretched 
line length, 𝐸𝐴 represents the extensional stiffness (Young’s modulus 
times cross-sectional area of the mooring line), and 𝑤 is the equivalent 
weight in water. 
⎧
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(11)

Obtaining 𝐹V and 𝐹H from Eqs. (10) and (11) at each time step re-
quires iterative numerical solution due to their implicit nature. Compu-
tational cost of solving these implicit equations at each time step of time-
domain dynamic simulation is significant, due to their iterative natures. 

Fig. 2. Schematics of system components, including: (a) tower structure, (b) spar buoy platform, and (c) mooring line and a depiction its computational model (d) 
that uses a neural network (NN) to model the horizontal and vertical forces exerted by the mooring line.

Ocean Engineering 328 (2025) 121037 

4 



Bayat et al.

Fig. 3. Performance of the neural network model for mooring force prediction.

Consequently, in the literature, these equations are often precomputed 
for a range of 𝑙 and ℎ values, with the resulting forces stored in lookup 
tables for efficiency. For example, Ref. Sirigu et al. (2022) employs a 
lookup table approach to map the six degrees of freedom of platform 
motion to the corresponding mooring forces using six-dimensional in-
terpolation.

To take the computational advantage from precomputed dataset, we 
implemented and trained a multilayer perception neural network (NN) 
using MATLAB’s newff and train functions. The NN maps 𝑙 and ℎ to the 
corresponding mooring forces, 𝐹V and 𝐹H. Training data were generated 
by solving Eqs.  (10) and (11) for a range of values, then split into 70% 
training, 15% validation, and 15% test datasets. Fig. 3 shows the perfor-
mance of the NN model on the test set for predicting 𝐹V, demonstrating 
high accuracy with a mean error (𝜇) of 2 and a standard deviation (𝜎) 
of 20.38. The correlation coefficient is nearly 1, indicating strong agree-
ment between predicted and actual values.

To compare performance with lookup table-based approaches, 
we used MATLAB’s interpolation method for scattered dataset:
scatteredInterpolant function, with three interpolation methods: lin-
ear, nearest neighbor, and natural neighbor interpolations. Their respec-
tive mean error and standard deviation value pairs (𝜇, 𝜎) are: (8.75, 45) 
for linear, (100, 1228) for nearest neighbor, and (100, 45) for natural 
neighbor method. As seen, the NN outperforms interpolation methods 
in both mean error and standard deviation. Additionally, when executed 
1000 times, the NN completed calculations in 0.046 s, whereas interpo-
lation required 0.41 s, confirming that the NN model is superior in both 
accuracy and computational efficiency.

Fig. 4 presents schematics that help define plant design variables. In 
this study the tower and blade designs are the extent of physical system 

design decisions. Fig. 4(a) and (b) illustrate the tower and blade design 
variables, respectively. We defined four plant design variables for the 
tower: tower thickness at the base 𝑡base, tower thickness at the tip 𝑡tip, 
tower outer diameter at the tip 𝑑tip, and tower length 𝑙. We also de-
fined ten blade design variables. The blade is divided into 17 nodes in 
the blade length-wise direction. Airfoil shape is predetermined for each 
blade node, and is not subject to design in this study. Distributed blade 
geometry may be adjusted by changing the values of blade twist (𝜙) and 
chord length (𝜁) for select control nodes. These select nodes are depicted 
as ‘optimizing nodes’ in Fig. 4(b)), shown as black circles and cover the 
entire blade length. The first three nodes (gray nodes in Fig. 4(b)) are 
assigned fixed values for twist and chord length to maintain a circular 
shape at the blade root where it attaches to the rotor hub (Deshmukh 
and Allison, 2016). The selection of optimizing nodes represents a trade-
off between computational efficiency and design flexibility, preventing 
excessive complexity that could increase computational cost or lead to 
optimization convergence issues. The blade twist and chord length were 
selected as design variables because they significantly impact Blade El-
ement Momentum (BEM) responses and are commonly used in aerody-
namic optimization studies, such as Ref. Deshmukh and Allison (2016). 
Twist and chord length values for interpolated nodes (white nodes in 
Fig. 4(b)) are calculated by interpolating functions based on a Bézier 
curve obtained by fixed and optimized node values. Coordinates of the 
referenced airfoil shape profiles (CYL, DTU, and NACA) in Fig. 4(b) can 
be found in the definition of NREL 5MW floating offshore wind turbine 
(Jonkman et al., 2009).

Fig. 5 shows an extended design structure matrix (XDSM) of the 
nested CCD optimization process. The objective function of the overall 
problem is maximizing energy production, given as 𝐸∗

in. The tower and 

Fig. 4. Schematics illustrating plant design variables: (a) tower design variables; (b) blade design variables. Distributed blade design is parameterized using twist 
(𝜙) and chord length (𝜁) values at each indicated ‘optimizing node’.
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Fig. 5. XDSM of the nested CCD problem depicting the solution process for the overall FOWT CCD problem. The inner-loop problem solves for the state and control 
trajectories, while the outer-loop problem solves for the plant design variables.

the blade design variables are represented as 𝐱t = [𝑡tip, 𝑑tip, 𝑡base, 𝑙]𝖳

and 𝐱b = [𝜙𝖳
5×1, 𝜁

𝖳
5×1]

𝖳, respectively. The superscripts † and ∗ repre-
sent the updated and optimal values, respectively. In the outer loop, 
the CMA-ES algorithm is used as an optimizer to iteratively create and 
update the plant design variables. This algorithm was found to han-
dle the noisy response of the inner-loop problem efficiently and effec-
tively. Power and thrust coefficients (𝐶𝑃  and 𝐶𝑇 ) were calculated using 
blade element momentum (BEM) theory (Hansen, 2015). For each plant
design, the spar buoy platform ballast mass required to achieve equilib-
rium in the heave direction is calculated. In addition, platform charac-
teristics such as the center of mass and mass moment of inertia are up-
dated. However, it should be noted that since the tower mass accounts 
for only about 3% of the total platform mass, the resulting changes in 
platform characteristics are minimal.

The inner-loop optimization problem is solved using the composition 
of these plant-dependent parameters (𝐶𝑃  and 𝐶𝑇 ), the dynamic model 
defined above, and the mooring force NN model. For each candidate 
plant design specified by the outer-loop plant design problem, the inner-
loop problem is solved, and the resulting optimal control trajectories and 
the inner-loop objective function values for varied average wind speed 
points are sent back to the outer-loop optimizer.

2.2.  Objective and constraint functions

The objective function used here is to maximize the AEP. To achieve 
this goal at the system-level, both the plant and control design vari-
ables need to be concurrently optimized. In this study, the plant design 
variables influence tower and blade geometry, and the control design 
variables are the time-dependent generator torque and blade pitch rate 
trajectories. The trajectories of both control signals are discretized at the 
collocation points using the ℎ𝑝-adaptive Legendre-Gauss-Radau (LGR) 

pseudospectral method (Patterson and Rao, 2014; Rao, 2010), where 
the optimal values at these points are obtained through an optimization 
process that maximizes (or minimizes) an objective while satisfying all 
constraints. After determining these discrete control values, a Lagrange 
polynomial interpolation is applied to reconstruct the continuous con-
trol trajectories, ensuring a smooth and numerically stable representa-
tion of the control inputs while preserving the accuracy of the optimal 
solution.

In this study, the goal is to maximize the energy generated over a 
one-year long time horizon in the inner-loop optimization problem. The 
annual power generation is calculated based on a weighted sum of the 
sample simulations using a probabilistic wind distribution. Each sam-
ple simulation consists of 100 s of a predefined wind speed profile at 
varied average wind speed values following the probabilistic distribu-
tion by setting the initial time, 𝑡𝑖, as 0 and the final time, 𝑡𝑓 , as 100 s 
in the inner-loop optimal control problems. Using this weighted sum 
method, the optimal design (in terms of both plant and control designs) 
converges to one that extracts the maximum average power for wind 
speeds with higher probability of occurrence. In contrast, the goal of 
maximum power can be relaxed for wind speeds with lower probability 
of occurrence.

The AEP can be obtained using Eq. (12):

AEP = 8760∫

∞

0
𝑃out(𝑈 )𝑓

(

�̄�
)

d�̄� ≈ 8760
𝑁B
∑

𝑗=1
𝑃out

(

𝑢𝑗
)

𝑃
(

�̄�𝑗
)

, (12)

where 8760 is the total number of hours in a year, �̄� is the nominal free 
wind velocity perpendicular to the rotor swept area, 𝑈 is the free wind 
speed at the hub height, 𝑃out is the time-averaged wind turbine output 
power, and 𝑓 (𝑈 ) is the Weibull probability density function. The free 
wind speed 𝑈 is also a function of tower length since the height of the 
tower determines the hub height. The nominal free wind speed, �̄� , is 
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Fig. 6. Free wind velocity values and the corresponding frequency of occur-
rence based on the Weibull probability distribution.

based on the free stream velocity data at the hub height (90m) for the 
NREL 5MW reference turbine. The integral that calculates the AEP can 
also be transcribed to a summation over 𝑁B wind speed bins. �̄�𝑗 and 𝑢𝑗
are 𝑗-th discretized quantities of �̄� and 𝑈 among 𝑁B wind speed bins, 
respectively.

Here we use Weibull probability distribution as a wind speed proba-
bilistic occurrence model over one year. The probability density function 
of the Weibull distribution is shown in Eq. (13):

𝑓
(

�̄�
)

= 𝑘
𝑐

(

�̄�
𝑐

)𝑘−1
exp

(

−
(

�̄�
𝑐

)𝑘
)

, (13)

where 𝑘 > 0 is the shape parameter (here, 𝑘 = 2), and 𝑐 > 0 is the scale 
parameter of the distribution (here 𝑐 = 13.44). This wind speed proba-
bilistic occurrence model is discretized with an interval of 1m/s over a 3 
to 25m/s range. For power generation analysis, the probabilities within 
this range are normalized to sum to 100% for its discretized range, re-
sulting in 𝑁𝐵 = 23 wind speed bins. The probability density function is 
illustrated in Fig. 6. The wind load applied at the center of the tower is 
also compensated by the power law to account for wind shear, shown 
in Eq. (14):

𝑢 = 𝑢(�̄�, 𝑙) = �̄�
(

𝑙 + 𝑧base
𝑙baseline + 𝑧base

)0.2
. (14)

This accounts for the tower height 𝑙 variation, where 𝑙baseline is the height 
of the NREL 5MW baseline wind turbine tower (76m) and 𝑧base is the 
distance from sea mean water level to tower base, which is 12.4m. 
Fig. 7(a) shows the wind velocity profiles for select �̄� values with the 
baseline tower length, and Fig. 7(b) shows the wind velocity profiles as 

a function of tower length with a specific �̄� value of 12m/s. Increased 
tower length tends to exhibit increased AEP in general because the free 
wind velocity at the higher altitude is larger, as shown in Eq. (14). How-
ever, this trend only holds up to a specific limit in practice because taller 
towers are also subject to increased thrust force, which leads to an in-
creased platform pitching motion. Increased platform pitch amplitudes 
will eventually reach the pitch limits enforced by path constraints in 
the inner loop optimal control problem. Excessive platform pitch can 
be curtailed in this CCD optimization problem through less aggressive 
generator torque or blade pitch rate control. This limits AEP gains with 
tower height. In other words, at some value for tower height, platform 
pitch limits AEP gains. Broader design changes, such as those to the 
platform or mooring subsystems, could help increase the tower height 
at which platform pitch begins to constrain AEP.

Optimization problems are often posed as minimization problems for 
compatibility with established optimization solvers and by convention. 
The outer loop objective function is defined as:

𝐽out = −8, 760
𝑁𝐵
∑

𝑗=1
𝑃 (�̄�)𝑃out(𝑢) = −8, 760 ⋅ 𝐸in, (15)

where: 𝐸in =
𝑁𝐵
∑

𝑗=1
𝑃 (�̄�)𝑃out(𝑢). (16)

𝐸in is obtained by solving the inner-loop problem across 23 wind speeds 
with their corresponding probabilities, as shown in Fig. 6. The objective 
of each inner-loop optimization problem is given in Eq. (17): 
𝐽in = −(𝑡𝑓 − 𝑡𝑖)𝑃out(𝑢). (17)

The time-averaged output power 𝑃out for each OLOC problem is com-
puted by Eq. (18): 

𝑃out(𝑢) =
1

𝑡𝑓 − 𝑡𝑖 ∫

𝑡𝑓

𝑡𝑖

(

𝑃𝑎 − 10−7�̇�2𝑔 − 107�̇�2𝑏
)

𝑑𝑡, (18)

where 𝑃a is aerodynamic power, �̇�g is generator torque rate, and �̇�b is 
blade pitch rate. The generator torque and blade pitch rates are control 
trajectories that are optimized in the inner-loop problem. The inner-loop 
objective function includes control cost terms (i.e., small penalties on the 
torque and blade pitch rates), to produce a non-singular optimal control 
problem and prevent bang-bang or singular arc control trajectories in 
the solution. Also, as discussed in Gros (2013), the aerodynamic power is 
used as an integrand instead of the generator power to prevent turnpike, 
which is embodied in turbine problems as the tendency to maximize 
generator torque at the termination of a finite time horizon. Parameter 
bounds and path constraint functions for the inner-loop optimization 
problem are defined in Tables 1 and 2. These values are mostly driven 
from the NREL 5MW baseline wind turbine (Jonkman et al., 2009). The 

Fig. 7. Wind profiles in 100 s of time horizon for varied mean wind velocity (�̄�) and varied tower height (𝑙). (a) Wind profiles for mean wind velocity values ranging 
from 6 to 16m/s; (b) Wind profile for mean wind velocity of 12m/s and tower height values ranging from 60 to 100m.
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Table 1 
Parameter bounds for the inner-loop OLOC problem.
 Name  Explanation  Unit  Lower bound  Upper bound
𝜔𝑟  rotor rotational velocity  rad/s 0.00 1.51
𝜃𝑝  platform pitch  deg −6.3 6.3
𝜃𝑏  blade pitch  deg 0.0 40.0
𝜏𝑔  generator torque 106 N-m 0.00 4.18
�̇�𝑏  blade pitch rate  deg/s −0.57 0.57
�̇�𝑔  generator torque rate  MW −0.1 0.1
𝜙  blade twist  deg −0.001 15.970
𝜁  blade chord length  m 0.014 5.580

Table 2 
Path constraints for the inner-loop OLOC problem.
 Name  Explanation  Unit  Constraint
𝜎  Tower maximum static stress  MPa 𝜎 ≤ 45.0 or 90.0
𝑃𝑢  Generator power  MW 𝑃𝑢 ≤ 5.0

results given in Section 3 indicate that some of these constraints are 
active in certain regions of operation. Once all the inner-loop problems 
(in this study, 23 inner-loop OLOC problems) are solved, 𝐸in is updated 
by using Eq. (16) for computing the outer-loop objective function, given 
in Eq. (15).

In the nested CCD strategy introduced previously in Fig. 5, the outer 
loop optimizer updates the plant design. In this study, we use CMA-ES to 
generate a set of design points (population) to evaluate, and the covari-
ant matrix adaptation procedure finds the direction toward the optimal 
solution. For the design points generated by the CMA-ES, the inner-loop 
OLOC problem is solved. The Weibull probabilistic distribution is uti-
lized to divide wind speeds into 23 bins with center �̄� ∈  , where �̄� rep-
resents the average wind velocity. As defined in Eq. (14), the wind speed 
for defining wind load 𝑢 is a function of �̄� and 𝑙, and this relationship de-
pends on tower height. The outer-loop objective function is equivalent 
to the weighted sum of the 𝑁𝐵 inner-loop objective functions, which 
is required for stable convergence of the nested CCD problem. When 
the outer-loop optimization problem converges, the CMA-ES algorithm 
provides the final optimal solution and will be terminated.

3.  Results and discussion

This section comprises several studies aimed at showcasing the re-
sults of the CCD approach and gaining insights from different scenarios. 
In Section 3.1, two cases are discussed: 1) CCD with four tower param-
eters as plant design variables, and 2) CCD with four tower parame-
ters and ten blade parameters as plant design variables. This section 
presents the obtained optimal plant variables and objective values. It 
also includes an illustration of the CMAES population, and a sensitivity 
study is performed. Section 3.2 investigates the impact of changing the 
maximum allowable tower stress constraint on power generation and 
Annual Energy Production (AEP). It should be noted that here, stress re-
sulting from fore-aft bending was only considered. Throughout this pa-
per, when discussing stress upper bound, we specifically mean the upper 
bound of fore-aft bending stress. This constraint is used here just as a 
means to observe the coupling between plant and controller, and to see 
how the design changes as we modify the upper bound. In future work, 
additional constraints and higher fidelity models will be employed. Sec-
tion 3.3 explores the effect of increasing tower mass on the time series 
trajectories within the inner loop. Lastly, Section 3.4 demonstrates the 
inner loop trajectories in the presence of waves and includes a fatigue 
study. These sections collectively offer a comprehensive analysis of CCD 
results and provide valuable insights into various aspects of the design 
and optimization process of floating offshore wind turbines.

3.1.  Control co-design with tower only and tower and blade plant design 
variables

This section presents the results of two CCD studies and compares 
them with the optimal control result of the baseline NREL 5MW wind 
turbine with the same model presented in Section 2. Unless mentioned 
otherwise, the maximum tower stress constraint value used in this study 
is 45MPa. The summary of the problems we compare in this study are 
listed in Table 3, where 𝜙 is blade twist, 𝜁 is blade chord length, and in-
dices represent blade node values. Readers are also referred to Fig. 4 for 
the nodal information where design variables are located. Bolded values 
in the table indicate design variables that are held fixed and not opti-
mized during the CCD procedure. The ‘None (baseline)’ column repre-
sents the NREL 5MW baseline result, where all plant design variables are 
fixed, and the inner-loop OLOC problem is the only optimization prob-
lem that is solved to generate the optimal AEP, 𝐽 ∗

out. The next ‘Tower 

Table 3 
Optimal plant design variable values and corresponding merit function values for optimization with varied 
targets. The tower-only (T) CCD problem solves for tower design variables in conjunction with control 
trajectories. The tower and blades (T&B) CCD problem solves for the tower design parameters, blade 
design parameters, and control trajectories. Values with bold represent parameters are not optimized and 
held constant.

 Optimization target
Group  Variable  Unit None

(baseline)
Tower
only

Tower & 
blades

Tower parameters
𝑡base  m 0.027 0.042 0.042
𝑡tip  m 0.019 0.012 0.012
𝑑tip  m 3.870 4.95 5.00
𝑙  m 77.600 83.04 81.38

Blade parameters

𝜙4  deg 13.31 13.31 12.09
𝜙6  deg 11.48 11.48 9.23
𝜙9  deg 6.54 6.54 3.96
𝜙12  deg 1.53 1.53 1.52
𝜙17  deg 0.11 0.11 0.06
𝜁4  m 4.557 4.557 5.580
𝜁6  m 4.007 4.007 5.056
𝜁9  m 3.502 3.502 3.136
𝜁12  m 2.764 2.764 2.458
𝜁17  m 1.419 1.419 1.458

Merit functions −𝐽 ∗
out  GWh 26.24 29.22 29.34

𝑚tower  tonne 249.6 344.4 342.0
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Fig. 8. Optimized tower and blade designs for the CCD problem with both tower and blade (T&B) variables optimized. (a) Optimized tower shape compared to the 
baseline design; (b) Optimized blade twist (𝜙) and chord length (𝜁) over normalized blade radial position (𝑟∕𝑅). The tower wall thickness shapes are exaggerated for 
visual comparison. Readers are referred to ‘Tower & blades’ column in Table 3 for accurate wall thickness values.

Fig. 9. Optimized blade power and thrust coefficients as functions of tip speed ratio (𝜆) and blade pitch angle (𝜃𝑏). (a) Power coefficient surface; (b) thrust coefficient 
surface.

only’ column presents the results from the first CCD problem, which 
optimizes the tower design variables and the control trajectories. The 
last ‘Tower & blades’ column corresponds to the second CCD problem, 
which optimizes both the tower and blade design variables, as well as 
the control trajectories.

As we see from the overall AEP (objective function) values, −𝐽 ∗
out, 

from Table 3, increased design flexibility with more plant design de-
grees of freedom help improve the objective function value significantly. 
Compared to the baseline design, optimizing the tower and blade design 
variables and the control trajectories together increases AEP by 7.17%. 
Fig. 8(a) depicts the optimized tower design for the CCD case with both 
the tower and blade design variables optimized. The converged design 
solution indicates that the tower height has increased to a particular 
height (here, 83.12m) that is larger than the baseline tower height 
(77.60m) design. In addition, the tower thickness has also increased 
to satisfy tower stress constraints. The optimized blade is illustrated in 
Fig. 8(b), and the resulting power and thrust coefficients corresponding 
to this optimal blade design are shown in Fig. 9. The power and thrust 
coefficients are functions of blade pitch 𝜃b and tip speed ratio 𝜆.

Candidate designs that were explored during the CMA-ES optimiza-
tion procedure are shown in Fig. 10, depicted in two distinct two-
dimensional spaces. The corresponding tower shapes for the optimal 
design and a selected suboptimal design are shown in Fig. 11. In Fig. 10, 
the optimal design point is indicated with a green square, and a sample 
suboptimal design point with a slightly larger tower mass is marked with 

a blue diamond. The indicated optimal design point exhibits the high-
est AEP value among all explored design points. The zoomed-in view of 
the plot shows that the optimal point has one of the largest objective 
function values among all of its neighbors. Across all of the designs ex-
plored in this study, the platform shape is fixed. As tower mass changes, 
the variable ballast (ballast water mass in practice) is adjusted to satisfy 
the force equilibrium requirement in the heave direction. Therefore, the 
platform capital cost for all these design points will be the same, but the 
tower cost varies with tower design changes.

Suppose we consider a multiobjective optimization problem for max-
imizing the AEP and minimizing the tower mass. This quantifies the 
best-possible tradeoffs between AEP and mass. In this case, all the design 
points in Fig. 10, which are located on the right side of the hypotheti-
cal vertical line crossing through the optimal design point are inferior 
to the optimal design since both performance indices (the AEP and the 
tower mass) are dominated by the optimal design. However, on the left 
side of the hypothetical vertical line, finding good nondominated solu-
tions in terms of superior tower mass value by sacrificing the AEP value 
is possible. Thus, we have identified a strategy for expanding this CCD 
problem into a multiobjective optimization study. Additional objective 
functions that consider additional performance and cost indices beyond 
AEP and mass may be used.

A sensitivity analysis has been performed with a ±5% perturbation of 
tower design variables based on the optimal design resulting from the 
tower-only CCD problem. The sensitivity results confirm the validity
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Fig. 10. Explored designs in the two-dimensional space of AEP and mass of FOWT components for the CCD problem with tower-only (T) plant optimization. Square 
markers represents the optimal plant and control design points. Diamond markers represent a selected suboptimal design point with a tower design that is heavier 
than the optimal design. Circular dots represent explored design points. Here, platform design is not optimized, but ballast mass is adjusted to keep the mean water 
level of the floating platform consistent. (a) Explored designs in AEP and tower mass space; (b) Explored designs in AEP and platform mass space.

Fig. 11. Resulting tower shape for the two design points highlighted in Fig. 10. 
The selected suboptimal design point has a larger tower mass, but the AEP for 
the optimal design point (29.22 GWh) is about 9% larger than the AEP for the 
suboptimal design point (26.77 GWh).

Table 4 
Sensitivity study results with ±5% perturbations of tower design 
variable values obtained from the tower-only CCD optimization 
result.

 Tower design Δrel  Value 𝐽out Δ𝐽rel Δ𝐽rel∕Δrel
 parameter  [%]  [m]  [GWh]  [%]  [−]
𝑡+base +5.0  0.0445 −28.7839 −1.49 −0.298
𝑡−base −5.0  0.0403 −29.2094 −0.04 −0.008
𝑡+tip +5.0  0.0120 −29.2083 −0.04 −0.008
𝑡−tip −5.0  0.0108 −26.9892 −7.63 −1.526
𝑑+
tip +5.0  5.353 −29.2076 −0.04 −0.008

𝑑−
tip −5.0  4.843 −29.2134 −0.02 −0.004

𝑙+ +5.0  86.751 −29.1929 −0.09 −0.018
𝑙− −5.0  78.489 −29.2023 −0.06 −0.012

of our design solution by demonstrating performance reductions.
Table 4 presents a summary of the sensitivity analysis results. In this 
table, a relative perturbation Δrel for an arbitrary quantity 𝜒 is defined 
as Δrel = (100%)(𝜒 − 𝜒∗)∕𝜒∗. Similarly, a relative change in AEP Δ𝐽rel
is defined as Δ𝐽rel = (100%)(|

|

𝐽out|| −
|

|

|

𝐽 ∗
out

|

|

|

)∕||
|

𝐽 ∗
out

|

|

|

. As observed in the

Fig. 12. Optimal tower shapes for two distinct allowable tower stress values: 
45MPa and 90MPa.

results, varying any tower design variable by 5% in any direction from 
the optimal design decreases the AEP. In addition, the table indicates 
that the tower tip thickness and tower base thickness are the most sen-
sitive parameters that affect the objective function value.

3.2.  Comparison of increased maximum allowable tower stress

To quantify the effect of failure mode constraints on the CCD result, 
a new study is presented in Figs. 12 and 13. In this study, the maximum 
allowable tower stress is increased from 45MPa to 90MPa. This corre-
sponds to a different (more expensive) tower material selection. Fig. 12 
shows the optimal tower shapes obtained for these two cases. Increased 
allowable stress results in optimal designs with increased tower heights, 
increased wind load, and a higher AEP.

The study involves comparing power curves generated using two dif-
ferent stress upper bounds. Additionally, examining the changes in the 
power curve when the plant design is obtained based on one case, but 
the OLOC is solved assuming a maximum stress constraint from the other 
case would provide insightful results. This concept is common in many 
engineering situations, where plants are designed either using CCD or 
sequential approaches with certain constraints, but the maximum con-
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Fig. 13. Generated power curves under various scenarios. Sub-figures refer to power curves of steady and varied wind cases for (a) 𝑥∗𝑝|𝜎≤90, 𝜎 ≤ 90; (b) 𝑥∗𝑝|𝜎≤45, 𝜎 ≤ 45; 
(c) 𝑥∗𝑝|𝜎≤90, 𝜎 ≤ 45; Comparison of steady wind power curves with varied tower stress constraints in the control problem, when optimal plant design is obtained at 
(d) 𝜎 ≤ 90MPa; (e) 𝜎 ≤ 45MPa; and (f) Comparison of AEP trends for cases illustrated in (d) and (e).

straint may change in reality. This study demonstrates that such changes 
can degrade system response and performance. In this context, 𝑥∗𝑝|𝜎≤𝜎𝑖
represents the optimal plant obtained using the CCD approach with a 
maximum stress constraint of 𝜎𝑖 MPa. Subsequently, 𝜎 ≤ 𝜎𝑗 indicates 
that the power curve is generated using the optimal plant from the
previous step, while the maximum stress in the OLOC simulation is set 
to 𝜎𝑗 MPa.

Fig. 13(a) illustrates the power curve obtained when the maximum 
tower stress is set to 90MPa. In this case, 𝑥∗𝑝|𝜎=90 refers to the optimal 
plant obtained using the CCD approach with a maximum stress con-
straint of 90MPa. Subsequently, 𝜎 = 90 indicates that the power curve 
is generated using the optimal plant from the previous step, while the 
maximum stress in the OLOC is also set to 90MPa. In part (a) of the fig-
ure, both the CCD and OLOC utilize the same maximum stress constraint 
to generate the power curve, indicating an expected favorable outcome. 
The power curve is generated using a constant wind speed ranging from 
3 to 25m/s in 1m/s increments. The simulation is conducted over a 
duration of 10min, with the average power value computed. Addition-
ally, to examine the power time series for non-constant wind speeds, 
the wind profile depicted in Fig. 7 is employed, incorporating average 
values between 3 and 25m/s. As depicted in Fig. 13(a), the power curve 
exhibits an increase roughly proportional to the cube of the wind speed 
in region 2 (below rated wind speed). In region 3 (above rated wind 
speed), the power remains relatively constant (assuming power con-
stancy instead of torque constancy). Moreover, the power time series 
aligns closely with the average values derived from the constant wind
speeds.

Fig. 13(b) depicts a similar plot, but in this case, both the CCD and 
OLOC simulations employ a constant stress of 45MPa. Fig. 13(c) illus-
trates the results when the plant is obtained from the CCD case with a 
maximum stress of 90MPa, but in the subsequent OLOC simulation, the 
stress constraint is reduced to 45MPa. As observed, the power curves 

show a decline, which is reasonable considering the disparity between 
the maximum stress assumptions in the CCD and OLOC simulations.

In Fig. 13(d), the power curve is presented for various cases. For 
the first six cases, the plant design is obtained from 𝑥∗𝑝|𝜎=90, but the 
maximum stress in the OLOC simulation is varied from 45 to 90MPa. 
It can be observed that decreasing the maximum stress in the OLOC
simulations causes a downward shift in the power curve. Furthermore, 
as the maximum stress is reduced further, the power decrease becomes 
more pronounced. The last case in Fig. 13(d) corresponds to 𝑥∗𝑝|𝜎=45, 
and interestingly, the power curve for this case is nearly identical to 
that of 𝑥∗𝑝|𝜎=90. The only distinction between these two cases lies in the 
assumption regarding the maximum stress in the CCD and OLOC simu-
lations. In the last case, the maximum stress remains the same in both 
simulations, while in the previous case, the plant obtained from 𝑥∗𝑝|𝜎=90
is designed to tolerate stresses ranging from 45 to 90MPa. However, 
enforcing a maximum stress of 45MPa in the OLOC simulation leads to 
performance degradation, requiring a compromise in power generation 
to meet the stress constraints.

Fig. 13(e) illustrates a similar concept, but this time the plant design 
is obtained from 𝑥∗𝑝|𝜎=45 for the first six cases. As observed, increasing 
the maximum stress in the OLOC simulation does not alter the power 
curve because the plant design is already based on an assumption of a 
maximum stress of 45MPa. Therefore, increasing this constraint in the 
OLOC simulation has no effect on the power curve.

Fig. 13(f) displays the Annual Energy Production (AEP) derived from 
parts (d) and (e) of the analysis. For 𝑥∗𝑝|𝜎=90, reducing the maximum 
stress constraint results in a degradation of the power curve and con-
sequently a decrease in AEP. However, for 𝑥∗𝑝|𝜎=45, increasing the max-
imum stress bound does not alter the power curve significantly, and 
the AEP remains almost the same. Upon examining this figure, one may 
question the purpose of employing a higher maximum stress constraint 
in the CCD if the power curve obtained from a 45MPa assumption is not 
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Table 5 
Comparisons of parameters and results for OLOC studies with optimal 
tower mass (Case 1), increased tower mass (Case 2), and forward or-
dinary differential equation (ODE) simulation result using the control 
trajectories of Case 1 with the tower design of Case 2 (Case 3). 𝑃out is 
reported for the case where wind speed is equal to 14m/s.
Parameters Case 1 Case 2 Case 3
𝑡base [m] 0.042 0.042 0.042
𝑡tip [m] 0.012 0.028 0.028
𝑑tip [m] 4.95 6.50 6.50
𝑙 [m] 83.04 83.04 83.04
𝑚t [kton] 0.345 0.505 0.505
𝑚p [kton] 7.472 7.311 7.311
𝑃out[MW] 4.93 4.83 4.83
AEP [GWh] 29.22 28.73
Method OLOC OLOC Simulation

considerably lower than the 90MPa case. The response to this query is 
two-fold:

1. As illustrated in Fig. 11 the tower designed for 𝑥∗𝑝|𝜎=45 is thicker, 
potentially increasing the tower mass and subsequently the total 
cost. In this study, for instance, the tower mass increased from 244.9 
tonnes in 𝑥∗𝑝|𝜎=90 to 344.4 tonnes in 𝑥∗𝑝|𝜎=45.

2. Even a small enhancement in AEP can yield significant monetary 
benefits. In the present case, the difference amounts to approxi-
mately 0.5GWh. Assuming an electricity cost of $0.13 per kWh, this 
translates to an annual savings of approximately $65, 000 USD.

Overall, the consideration of factors such as tower mass and cost, as 
well as the potential financial gains from even slight improvements in 
AEP, justifies the exploration of higher maximum stress constraints in 
the CCD optimization process.

3.3.  Comparison studies showing tower mass effect on AEP

Another set of comparison studies was performed to show the effect 
of changing tower mass on AEP while maintaining a consistent tower 
height. Table 5 contains the summary of parameter values and the re-
sults of this comparison study. Case 1 is the OLOC problem with the op-
timal tower design parameters obtained via the CCD problem presented 

above. Case 2 is another OLOC problem with the same tower height but 
with increased tower mass. Case 3 is based on solving the dynamic sys-
tem model (ordinary differential equations) using a forward simulation 
and the control trajectories obtained from Case 1 and the tower design 
of Case 2. All three problems are solved using the same wind profile 
with an average wind speed �̄� of 14m/s. In summary, Cases 1 and 2 are 
solved for obtaining the optimal control trajectory designs, while Case 3 
is solved using a forward simulation with provided control trajectories.

Comparisons of results for these three cases are shown in Figs. 14 and 
15. Fig. 14(a) and (b) shows the generator torque and blade pitch tra-
jectories, which are controlled quantities. Actual control signals used 
in numerical optimization are rates of these quantities. The control 
trajectories for Case 3 are extracted from the OLOC result of Case 1. 
However, due to a difference in numerical integration schemes, gen-
erator torque trajectories exhibit a slight difference. Case 1 is solved 
using the ℎ𝑝-adaptive LGR pseudospectral method for the OLOC prob-
lem, which incorporates LGR quadrature for numerical integration. In 
contrast, Case 3 involves an ODE simulation that uses control trajec-
tories obtained from Case 2. This simulation does not involve numer-
ical optimal control and is solved as a time-domain simulation; there-
fore, Case 3 employs the Dormand-Prince method (Dormand and Prince, 
1980), a family of higher-order Runge–Kutta methods. Notably, the opti-
mal control trajectories for Cases 1 and 2 are significantly different since 
the tower designs for these cases are different. This difference indicates 
that the control strategy should be individually established for a spe-
cific plant design, which could be attainable using the CCD strategy pre-
sented in this study. Feedback control laws could be synthesized based 
on the OLOC CCD results. It is possible that for some CCD problems, no 
feedback control exists that can mimic the behavior of the OLOC tra-
jectories. Methods for systematically informing CCD optimization stud-
ies based on feedback control law limitations is a topic of ongoing
work.

Fig. 14(c)–(e) shows the trajectories of rotor rotational velocity, gen-
erator power, and power coefficient curves, and Fig. 15 shows the tra-
jectories of model dynamic responses, including platform motions in 
(a)–(c), tower stress in (d), and velocities in (e)–(f). The plant design for 
Case 1 is selected from the ‘Tower only’ CCD result, which is already op-
timized and is given in Table 3. In contrast, the plant design for Case 2 
deviates from the optimal design since tower mass was intentionally in-
creased. Thus, in Fig. 14(d), the area under the generator power curve 

Fig. 14. Trajectories of control inputs and model outputs that correspond to the three cases listed in Table 5. Dotted horizontal lines indicate the upper bounds for 
corresponding quantities. (a) Generator torque; (b) blade pitch; (c) Rotor rotational speed; (d) Generator power; (e) Power coefficient.
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Fig. 15. Trajectories of model dynamic outputs, including motion trajectories, stress, and velocities that correspond to the three cases listed in Table 5. Dotted 
horizontal lines indicate the upper bounds for corresponding quantities. (a) Platform surge motion; (b) platform heave motion; (c) platform pitch motion; (d) tower 
stress; (e) rotor hub fore-aft velocity; (f) relative wind velocity.

𝑃u for Case 1 is significantly larger than for Case 2. Also, Case 1 exhibits 
a much longer period of constraint saturation (active path constraint in-
dicated by the dotted horizontal line) compared to Case 2, as shown in 
Fig. 14(d). In addition, because the control trajectories used in Case 3 
are not optimized with respect to its unique plant design parameters, 
we see that the Case 3 simulation result violates bounds and path con-
straints, as shown in Figs. 14(c)–(d) and 15(c).

From the results given in Figs. 14 and 15, increased tower mass pro-
duces a larger tower mass moment of inertia with respect to the rota-
tional center for the platform pitch DOF. Thus, Case 3 exhibits a larger 
value in the peak platform pitch motion, as shown in Fig. 15(c). As 
Cases 2 and 3 have common plant designs, the OLOC result from Case 2 
can provide a mitigating strategy for the increased platform pitch mo-
tion from Case 3. By comparing the control trajectories of Cases 2 and 
3, we observe that the blade pitch motion in Case 2 is significantly 
increased, resulting in reduced aerodynamic thrust applied to the tur-
bine. With this optimized control strategy, the platform pitch motion 
can be mitigated to satisfy the constraint with the increased tower mass 
in Case 2, but with a sacrifice in power generation.

We used the same absolute wind profiles at the same mean wind ve-
locity value (�̄� = 14 m/s) for fair comparisons across these three cases. 
One item to note is that the relative wind velocity profiles for these 
three cases are different from each other, as shown in Fig. 15(f). The 
reason behind this difference is that the thrust load exerted to the wind 
turbine is based on the relative wind velocity considering the rotor hub 
fore-aft motion. Thus, the relative wind velocity is calculated by sub-
tracting the rotor hub fore-aft velocity from the absolute wind veloc-
ity. Due to significant platform pitch motion (unlike land-based wind 
turbines), the rotor hub fore-aft velocity is significant. As a result, the 
relative wind velocity profile can vary depending on plant design, and 
this variation impacts the resulting optimal control strategy and power
generation.

It should also be noted that the platform shape across all studies 
presented here is fixed. The only variable here that can change the plat-
form properties is the variable ballast mass. When the tower design pa-
rameters are modified, the variable ballast mass is automatically mod-
ified to satisfy the mass and buoyancy equilibrium requirement in the 
platform heave DOF. However, there are a few other ways to achieve 
mass and buoyancy equilibrium: (1) adjust the submerged volume of the 

platform by changing shape, or (2) adjust equilibrium draught height. 
Each of these options may affect optimization results significantly. How-
ever, to maintain simplicity, we kept the platform shape and the equi-
librium draught height as fixed constants. Instead, we defined the vari-
able ballast mass as a variable that depends on the tower mass. More 
flexible design studies may reveal new insights and potentially higher
performance.

This study highlights an important finding that increasing tower 
mass does not necessarily result in an increase in generated power and 
Annual Energy Production (AEP). In fact, it was observed that for a fixed 
tower length, increasing the tower diameter and tip thickness led to 
a worse outcome in terms of power generation. This underscores the 
need for an integrated approach in obtaining optimal plant design vari-
ables, considering the coupling between the design variables and the 
controller. By taking full advantage of this coupling, it becomes possi-
ble to optimize both the structural aspects and the controller, leading to 
improved overall performance and energy production.

3.4.  Wave and fatigue study

In the previous sections, the dynamics of the FOWT system took into 
account the interaction between the water and the platform motion, 
but wave loads were excluded for simplicity. However, wave loading is 
an essential external disturbance that can cause FOWT system failures. 
Wave loading leads an additional computational burden in solving the 
CCD problem of the FOWT system. Thus, instead of solving all CCD 
cases with wave loading, an optimal result obtained for the tower-only 
case with wave loading is compared to the result of the same problem 
without wave loading obtained in the previous section. Fatigue analysis 
is also performed on the tower-only CCD cases (with and without wave 
loading).

Fig. 16 shows the optimal control results for two cases: without and 
with wave loading. The wave is obtained from Al-Solihat (2017) and is 
a irregular signal with a period (𝑇𝑝) of 10 s and significant wave height 
(𝐻𝑠) of 6m. Including wave loading results in higher frequency motion 
responses, requiring higher frequency control inputs. This may acceler-
ate fatigue damage. To see this effect, Mlife (Hayman, 2012), a fatigue 
prediction code, is used to compute fatigue life of the tower. The lifetime 
is considered 20 years, and the ultimate strength is set in such a way that 
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Fig. 16. Optimal control performed on the “tower only” plant design given in Table 3 without and with additional wave loading. (a) Wave amplitudes; (b) Wave 
velocities in surge and heave directions; (c) Platform heave motions; (d) Platform pitch motions; (e) Optimal generator torque trajectories; (f) Tower stress trajectories.

20 years life time is satisfied. For the case that wave loading is not in-
cluded, 20 years of lifespan is satisfied with the tower design strength 
of 45.08MPa, which is close to the previous CCD result without con-
sidering fatigue lifespan (45MPa). However, when the wave loading is 
implemented, the required tower design strength needs to be increased 
to 61.78MPa to satisfy the 20 years of lifespan. It should be noted that 
this is an initial study utilizing low-order models to decrease computa-
tion time. More detailed models need to be incorporated to verify fatigue 
lifespan of the entire FOWT system design.

4.  Limitations

The limitations of this study are as follows:

• Although this study explored the CCD of FOWTs and integrated 
models for multiple disciplines, including hydrodynamics, aerody-
namics, and servo-elasticity, the plant design variables are lim-
ited to the tower and blade subsystems, while floating platform 
shape parameters are not optimized. Instead, we adopted the NREL 
5MW OC3-Hywind spar buoy platform (Jonkman, 2010). As noted 
in Ref. Jonkman (2010), potential flow theory alone cannot fully 
capture accurate hydrodynamic coefficients, requiring supplemental 
damping adjustments based on experimental data. While our study 
adopts this specific spar buoy floating platform, optimizing the float-
ing platform design itself is beyond the scope of this study. It remains 
an important direction for future work.

Including the floating platform shape in the set of design vari-
ables would require regenerating the coupling mesh and solving 
high-fidelity computational models (e.g., computational fluid dy-
namics) for each design iteration to obtain accurate hydrodynamic 
coefficients, substantially increasing computational costs and model-
ing efforts. Prioritizing floating platform optimization would there-
fore require reallocating resources, potentially constraining the op-
timization of other key components, such as the tower and blades. 
To address this challenge, future work should explore experimen-
tal studies and low-fidelity frequency-domain models to identify the 
most influential design variables. Optimizing only these key param-
eters during the CCD process would help achieve a balance between 
accuracy and computational efficiency.

• The ROM employed in this study effectively captures key aero-
hydro-servo couplings while maintaining computational efficiency.
However, as with similar models, certain aspects of fluid-structure 
interaction (FSI) are simplified, particularly under complex wave 
conditions. For example, the use of linear hydrodynamic coefficients 
and simplified approximations for added mass and damping may 
not fully capture nonlinear effects such as second-order wave effects 
and viscous drag. Despite these limitations, ROMs have proven valu-
able in early-stage design optimization by providing insights into de-
sign trade-offs. Future work could include validation against higher-
fidelity models, particularly for scenarios exhibiting strong FSI
effects.

• Given the computational expense of CCD and its primary role in guid-
ing design directions during early-stage development, we have uti-
lized a limited number of DLCs, a common practice in many existing 
studies. However, it is important to emphasize that the primary ob-
jective of CCD is to explore the design space in its early stages and 
assess the system’s maximum potential. In subsequent phases, ad-
ditional DLCs and higher-fidelity models should be incorporated to 
further evaluate the system responses and ensure compliance with 
all necessary design criteria.

5.  Conclusion

In this study, a nested CCD method using OLOC was implemented 
for integrated FOWT design optimization. The reduced-order FOWT 
model, based on a spar buoy platform and the NREL 5MW tur-
bine, provided computational efficiency while capturing key multidis-
ciplinary interactions. The optimization framework incorporated 14 
plant design variables, with an inner-loop OLOC problem solved us-
ing the pseudospectral method. Neural network-based mooring mod-
els were employed to reduce computational costs while maintaining
accuracy.

The CCD results demonstrated an AEP increase of over 11% com-
pared to the baseline, highlighting the benefits of simultaneous opti-
mization of plant and control variables. Sensitivity analysis revealed the 
influence of key design parameters, emphasizing the trade-offs between 
tower mass, platform stability, and aerodynamic efficiency. Addition-
ally, the study examined the impact of tower stress constraints on AEP 
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and cost, showing that stricter stress limits can lead to increased tower 
mass and higher capital costs.

While the floating platform is not explicitly optimized, other de-
sign variables, including blade twist and chord profiles, tower struc-
tural parameters, and generator torque and blade pitch rate control tra-
jectories, significantly influence the floating platform’s hydrodynamic
response. This interdisciplinary coupling emphasizes the necessity of 
CCD for FOWT applications.

This study provides a foundation for early-stage FOWT CCD explo-
ration, offering insights into the interactions between structural and con-
trol design variables. While the reduced-order model enables efficient 
optimization, future work should integrate higher-fidelity models, addi-
tional design load cases, and closed-loop control strategies to improve 
practical applicability. Expanding this approach to more complex FOWT 
configurations, such as semi-submersible or TLP platforms, could further 
enhance its versatility and effectiveness in real-world applications.
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