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ABSTRACT
This paper discusses a framework to design elements of the plant
and control systems for floating offshore wind turbines (FOWTs)
in an integrated manner using linear parameter-varying mod-
els. Multiple linearized models derived from high-fidelity soft-
ware are used to model the system in different operating regions
characterized by the incoming wind speed. The combined model
is then used to generate open-loop optimal control trajectories
as part of a nested control co-design strategy that explores the
system’s stability and power production in the context of crucial
plant and control design decisions. A cost model is developed for
the FOWT system, and the effect of plant decisions and subse-
quent power and stability response of the FOWT is quantified in
terms of the levelized cost of energy (LCOE) for that system. The
results show that the stability constraints and the plant design
decisions affect the turbine’s power and, subsequently, LCOE of
the system. The results indicate that a lighter plant in terms of
mass can produce the same power for a lower LCOE while still
satisfying the constraints.

Keywords: floating offshore wind turbines; linear parameter-
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FIGURE 1: Floating offshore wind turbine (illustration courtesy
of NREL).

1 INTRODUCTION
The design of floating offshore wind turbines (FOWTs) has of-
ten followed a sequential pattern, where the physical plant pa-
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rameters are designed first, and a controller is then optimized
for this particular plant [1–4]. However, in FOWTs, there are
strong interactions between the structural and environmental dy-
namics and the controller. Unfortunately, a sequential design
process can produce unstable systems as it does not account for
this coupling [5, 6]. Optimizing both the physical plant and the
controller simultaneously enables rapid identification of stable,
system-level optimal results. This integrated design approach
has been studied extensively under the term control co-design
(CCD) [1,7–11]. Recently the importance of these integrated de-
sign approaches for energy system design has been recognized
by domain experts. References [5, 12, 13] have explored the
application of integrated design to offshore wind turbines, and
Refs. [14, 15] discuss the application of CCD to the design of
wave energy systems. Integrated design approaches have also
found applications in design of mixed renewable/nonrenewable
power generation systems [16].

The primary design goal of any wind-based energy system
is to capture as much power from the incoming wind while min-
imizing the structure’s dynamic loads. However, the overarching
balance between increasing the annual energy production while
minimizing the systems’ building and operating costs is essen-
tial to producing economical energy solutions. These goals are
captured by the levelized cost of energy (LCOE) [17]:

LCOE =
Total Lifetime Cost

Total Lifetime Energy Output
(1)

The total lifetime costs of the FOWT system are a combination
of the initial cost needed to build the system (capital cost) and the
maintenance costs over its lifetime. The capital costs are often di-
rectly linked to some of the plant design decisions [18, 19]. The
maintenance costs and the total lifetime energy output are depen-
dent on how the system operates and, consequently, depend on
the environment and how it is controlled [20]. Recent studies
have shown that advanced control strategies for offshore wind
applications can increase the power extracted from the turbine
and minimize the levelized cost [21]. Most conventional LCOE
estimates have not incorporated detailed dynamic assessments
nor the impact of novel control strategies. In the case of highly-
coupled, highly-constrained systems like FOWTs, such consid-
erations are imperative because of the many challenges making
these systems economically viable [22]. Additionally, overlook-
ing the impacts of control decisions on the optimal physical de-
sign is a pitfall of sequential design approaches.

1.1 Plant Design of Floating Offshore Wind Turbines

The plant design of a FOWT involves design decisions for several
individual subsystems and considerations of stability, cost, and
energy production. The primary elements of a FOWT are the
rotor, drivetrain, nacelle, tower, and support structure, and are
labeled in Fig. 1.

Stability of the FOWT about its natural equilibrium is re-

FIGURE 2: Controller regulation trajectories from Ref. [12].

quired in all manner of wind, wave, and current excitations that
the system might experience [23]. Reference [24] provides in-
formation about the current standard industry requirements of a
FOWT. Generally, increasing the mass of the support structure
will make the FOWT more stable, but this would also raise the
capital and other costs. Therefore, it is essential to optimize the
system for cost while ensuring stability [25]. As the develop-
ment cycle progresses, additional practical considerations like
assembly costs and procedures, maintenance costs, and ease of
transportation may also be incorporated into the plant design.

1.2 Wind Turbine Control of Floating Offshore Wind
Turbines

The control system for a FOWT is instrumental in achieving the
design goals stated in the previous sections. The power gener-
ated by a FOWT and the physical loads on its structure is heav-
ily dependent on the loading conditions induced by the wind,
waves, and currents. Operating the system in such a way so that
it can remain stable while producing maximal power is the pri-
mary goal of the FOWT control system. Similar to the control of
land-based wind turbines, the control strategy selected depends
heavily on the system’s input excitations, as these inputs produce
the dynamical responses we seek to optimize.

The primary mode of control for any wind turbine depends
heavily on the wind, so specific operating regions are often de-
fined based on the wind speed [26, 27]. Typically, there are four
wind speed-based regions of interest, visualized in Fig. 2. At
the lower, below-rated wind speeds, the system produces limited
power. Above the rated wind speed, the turbine is designed to
operate at its maximum power level. In between these regions,
there is a transition behavior, and at extremely fast, above-rated
wind speeds, the system is shut down as there can be permanent
structural damage.

The two primary control inputs for wind turbines are the
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pitch angle of the turbine blades (commonly called blade pitch)
and the torque produced by the generator. In below-rated wind
speeds, varying the generator torque is the primary mode of
control of the turbine [12]. At rated wind speeds, the generator
torque is held constant, and the blade pitch is varied in a process
called maximum power point tracking, where the rotor’s angular
velocity is continuously adjusted to extract the maximum possi-
ble power from the incoming wind.

1.3 Modeling Considerations

It is often necessary to conduct early-stage design studies to un-
derstand the desired fundamental system properties and behav-
iors that inform critical decisions that need to be made as the
system-of-interest is realized. The use of high-fidelity model-
ing tools in early-stage design studies is not always needed to
achieve the desired design insights and can be prohibitive due to
their complexity and computational expense.

To facilitate these design and control (both closed- and open-
loop) studies, it is common to develop reduced or lower-order
models that capture just the system’s essential physics. Re-
sults from these reduced-order models are validated against the
simulations from high-fidelity tools to understand their verac-
ity in studying the system’s behavior. After validation, these
models are then linearized around predetermined set-point val-
ues in distinct operating regions. These linearized models are
then used to understand the system dynamics and design con-
trollers in these operating regions. However, there are some
drawbacks to developing these lower-order models. The devel-
opment of these lower-order models is complicated as they re-
quire extensive subject knowledge of FOWTs and the associ-
ated physics/engineering disciplines. Additionally, the lower-
order models are developed to study a specific aspect of the sys-
tem’s behavior, e.g., the floating structure response, controller re-
sponse, aerodynamic wake, etc. As such, the results from these
models cannot be easily generalized. The highly-coupled nature
of a FOWT can create further complications in modeling the sys-
tem accurately [5, 28–31].

One way to mitigate these difficulties is by using linearized
models obtained directly from high-fidelity (e.g., computational
fluid dynamics) modeling tools [32, 33]. These models are ob-
tained by linearizing the nonlinear system around specific oper-
ating points, often stationary points where the system exhibits
static behavior. A linear time-invariant state-space dynamic
model about the static operating point (ξo,uo) typically has the
following form:

dξ∆(t)
dt

=Aoξ∆(t) +Bou∆(t) (2a)

y(t) =Coξ∆(t) +Dou∆(t) +go (2b)
where t is time, ξ∆(t) are the relative states related to the orig-
inal states ξ with ξ(t) = ξ∆(t) + ξo, u∆(t) are the relative inputs
related to the original inputs u with u(t) = u∆(t) +uo, y(t) are

the outputs, and the matrices (Ao,Bo,Co,Do,go) are associated
with the linearization process.

A significant drawback with any kind of linearized model is
their accuracy in capturing the system’s dynamic response dimin-
ishes quickly as the system’s behavior moves away from the ini-
tial operating point. Thus, it becomes difficult to work with many
diverse design load cases, where the wind speed continuously
varies. Some studies that have used linearized models have lever-
aged them in gain scheduling approaches to account for nonlin-
earities. However, this approach does not guarantee stability and
performance for all possible values of the wind speed [34].

In this work, we will discuss the use of linear parameter-
varying (LPV) models to help overcome the drawbacks of dis-
tinct linear models [34, 35]. These LPV models show good ac-
curacy when capturing the original nonlinear dynamics and can
be used to generate open-loop optimal control trajectories. Ad-
ditionally, LPV models have been used to develop closed-loop
controllers for wind turbines [34, 36].

1.4 Integrated Design with Control Co-Design

CCD is an integrated design paradigm that enables simultaneous
design optimization of the plant and control systems [10,37–39].
The CCD approach provides a rigorous framework that can nat-
urally handle the coupling between the plant and control drivers
present in FOWTs. A common mathematically-equivalent way
to decompose a CCD problem is with the nested formulation
and bilevel optimization [37, 38]. The coordination approach
defines a first-level, outer-loop problem that optimizes the plant
design with information on the best possible performance from
the second-level, inner-loop problem that optimizes the dynam-
ics and control for a given plant design (and is sometimes called
the control subproblem). In other words, the outer loop gener-
ates candidate plant designs x†p; this candidate is then passed to
the inner loop. The inner loop then produces an optimal control
solution xc and system dynamic states ξ for this candidate plant
design.

There are certain advantages in using the nested CCD ap-
proach (many are discussed in Ref. [38]), especially for problems
where the inner loop is a linear-quadratic dynamic optimiza-
tion (LQDO) problem. LQDO problems are characterized by
quadratic objectives, linear dynamic systems, general linear con-
straints, and open-loop control [38, 40]. Such problems can be
solved efficiently and accurately using quadratic programming
methods [41]. The use of open-loop control during early-stage
design studies can show the maximum achievable performance
of the system and provide the desired insights into the optimal
system dynamics and controller behavior [14, 38, 42]. Addition-
ally, nested CCD is often necessary when black-box models of
the dynamics are used (as will be the case in this work) [8, 43].
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1.5 Use of OpenFAST and WEIS Models
The wind energy with integrated servo-control (WEIS) is an
open-source project that is currently being developed by the Na-
tional Renewable Energy Laboratory (NREL) and partners that
will allow users to perform CCD of FOWT systems [2, 44]. The
WEIS toolbox is built on OpenFAST, another open-source tool-
box developed by NREL, that generates a full-system dynamic
response of FOWTs under wind, wave, and current excitations.
The OpenFAST tool is built on independent modules that capture
the important physical phenomena of the different FOWT sub-
systems and couplings between them. There are different mod-
ules to capture the effects of aerodynamics, hydrodynamics, ser-
vodynamics, and mooring dynamics. A variety of plant design
decisions can be explored within these tools as well [2].

In this work, the dynamic models of FOWTs will be gener-
ated using the linearization capabilities of the WEIS/OpenFAST
tools, with the original nonlinear dynamics simulation capabili-
ties being used for validation of the results. A detailed discussion
regarding the linearization capabilities of OpenFAST and the en-
tire tool can be found in Refs. [32,33,44,45]. Wind speed is used
to select the state and control operating points for this linearized
model.

The remainder of the paper is organized as follows. Sec-
tions 2 and 3 define LPV modeling theory and validates the spe-
cific LPV models used in this work, respectively. Section 4 for-
mulates the CCD problem using the LPV dynamic model. Sec-
tion 5 presents the results of several studies conducted to bet-
ter understand the impact of control and plant decisions on the
LCOE objective. Section 6 summarizes the results and provides
future steps for this work.

2 LINEAR PARAMETER-VARYING MODELS
As mentioned in Sec. 1.3, linearized models, like the one de-
fined in Eq. (2), can accurately describe the system’s behavior for
small perturbations about the operating point from which they
were derived. For the design and optimization activities of a
FOWT system, it is essential to understand the system behav-
ior over multiple input excitations. While there are additional
drivers for modeling variations, the primary one in wind energy
systems, including FOWTs, is the wind speed in the direction of
the turbine-blade system. Under different wind conditions, the
stationary operating points for the FOWT system greatly vary, as
do the matrices defining the dynamic model in Eq. (2). There-
fore, we will consider models dependent on this important pa-
rameter and will be useful in open-loop optimal control CCD
studies.

2.1 Linear Parameter-Varying Model Derivation
LPV models are a special case of linear time-varying (LTV) sys-
tems where the system matrices are continuous and are a function
of a set of parameters [35, 46]. Here, we will consider the single

parameter case where the parameter w indicates the current wind
speed value. Now, consider the following nonlinear parameter-
dependent model Σ:

Σ =


dξ
dt

= f (ξ,u,w)

y = g(ξ,u,w)
(3)

Our goal is to linearize this model about the w-varying oper-
ating point functions (ξo(w),uo(w)) where stationary or steady-
state models characterize their values:

f (ξo(w),uo(w),w) = 0, ∀w ∈ [wmin,wmax] (4)
where wmin is the minimum parameter value considered and wmax
the maximum.

Now, the relationship between the linearization states and
the original states depends on the parameter w:

ξ(t) = ξ∆(t) +ξo(w), u(t) = u∆(t) +uo(w) (5)
Assuming that w is time varying, the time derivative relationship
of the states is:

dξ
dt

=
dξ∆

dt
+

d
dt
ξo(w(t)) (6a)

=
dξ∆

dt
+
∂ξo

∂w
dw
dt

(6b)

Now, we use the following notation for the derivatives of the
nonlinear model:
A(w)B Jf

ξ
(ξo(w),uo(w),w) , B(w)B Jfu (ξo(w),uo(w),w)

C(w)B Jg
ξ

(ξo(w),uo(w),w) , D(w)B Jgu (ξo(w),uo(w),w)

where Jfx denotes the Jacobian of f with respect to x, and the
values of these functions are dependent on the operating points
and are denoted as:

f (w)B f (ξo(w),uo(w),w) , g(w)B g (ξo(w),uo(w),w)

With this derivative relationship in Eq. (6) and the notation
above, the nonlinear system Σ in Eq. (3) is linearized about
(ξo(w),uo(w)) yielding the following LPV system:

Σw =


dξ∆

dt
=�
��*

0
f (w) +A(w)ξ∆ +B(w)u∆−

∂ξo(w)
∂w

dw
dt

y = g(w) +C(w)ξ∆ +D(w)u∆

(8)

Note, if only a single time-invariant value of the parameter
denoted wo is considered, then we have the following system:

dξ∆

dt
=A(wo)ξ∆ +B(wo)u∆−

∂ξo(wo)
∂w �

�
�7

0
dw
dt

(9a)

y = g(wo) +C(wo)ξ∆ +D(wo)u∆ (9b)
which gives us:

Σo =


dξ∆

dt
=A(wo)ξ∆ +B(wo)u∆

y = g(wo) +C(wo)ξ∆ +D(wo)u∆

(10)

which is the same LTI system defined in Eq. (2) for a single op-
erating point characterized by the parameter wo.
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2.2 Construction using Multiple Linearized Models
The system Σw with continuous dependence on the parameter w
generally will not be directly available because linearized mod-
els are often realized through numerical methods for specific
operating points (i.e., Σo). Therefore, it may be necessary to
construct Σw from a finite strategic set of Σo models. To ac-
complish this goal, the matrix entries of Σw are determined by
element-wise matrix interpolation from a set of given denoted
Ω = {Σo1,Σo2, · · · ,Σon} each created using the parameters values
W = [w1,w2, · · · ,wn]. Derivatives of the polynomial interpolat-
ing function are directly computed when needed.

Now, there are several properties to consider to ensure such
an interpolation scheme has reasonable chance of meaningfully
capturing the nonlinear dynamics including:

(P1) The states, inputs, and outputs are unchanging for all con-
sidered Σo.

(P2) The sparsity patterns (nonzero entries in the system matri-
ces) are generally similar between analogous matrices.

(P3) The stationary condition in Eq. (4) holds for the given in-
terpolation scheme andW , i.e., (ξo(w),uo(w)) can be found
through interpolation such that the condition holds.

(P4) The element-wise relationships between different matrices
can be reasonably interpolated using a selectedW (note that
this is hard to quantify because errors in these coefficients
might not result in large errors in the key outputs).

(P5) At various validation points not inW , the error between the
actual linearized system at wo and the interpolated system
Σw quantified by the H∞ norm is below a tolerance ε:

‖Go(s)−Gw(s)‖H∞ ≤ ε (11)
where Go(s) and Gw(s) are the transfer function matrices
for Σo and Σw, respectively. Note that this error metric better
captures the input/output error in the system.

(P6) Time-domain simulations between the nonlinear Σ and LPV
Σw should be similar.

At this time, the selection of W was informed by expert
intuition and figures like Fig. 2 that characterize the different re-
gions of operation and their transition points. Future work will
consider automated sampling strategies that try to optimally sam-
ple points for constructing an accurate LPV using the condition
in Eq. (11).

3 LPV Model Validation for IEA-15 MW Turbine
The International Energy Agency (IEA) 15 MW offshore wind
turbine is a reference turbine model jointly developed by NREL
and Danish Technical University (DTU) [12, 47], visualized in
Fig. 1. The turbine is supported by a floating semisubmersible
platform and a chain catenary mooring system. The details of
the support structure are available in Ref. [48]. This is the system
under consideration in this work.

Two keys states in this system are the generator speed ωg

and platform pitch Θp. In its current form, the model is excited
by wind inputs only; wave and current disturbances are not con-
sidered. Correspondingly, the total inputs to the system are the
wind speed w, the generator torque τg, and the blade pitch β:

u(t) =
[
w τg β

]T
(12)

For the considered system, the OpenFAST tool can pro-
vide accurate simulations of the system’s nonlinear dynamics
(i.e., the outputs of Σ). However, due to the concerns expressed
in the previous sections, an LPV model is considered a less
computationally-expensive and structured alternative to these ex-
pensive simulations. The natural choice for the parameter needed
to construct the LPV model Σw is the wind speed. The op-
erating region of a wind turbine is between the cut-in wind
speed (wmin = 3 [m/s] in this study) and the cut-out wind speed
(wmax = 25 [m/s]). More points were sampled in the region be-
tween rated wind speed and below-rated wind speed to ensure
accurate modeling. To understand the accuracy of the LPV mod-
eling approach for this system, several comparisons were made.

3.1 State-Space Model Comparisons
With a selectedW (56 distinct wind speeds), the set of linearized
state-space models Ω at each of the wind speed values are ob-
tained. To construct the continuous Σw using W and Ω, direct
element-wise interpolation of the matrices (Ao,Bo,Co,Do) was
used. To reduce the interpolation costs, matrix sparsity patterns
were considered. Only entries with nonzero values were interpo-
lated (and the sparsity pattern remained similar (P2)).

To understand the predictive accuracy of this approach, and
check if these models satisfy (P4), the following test is carried
out. Every alternate point in W was chosen as a training data
for the interpolation procedure, and the values in-between are
selected as validation points. This allows us to assess if the inter-
polation approach can predict matrix properties by comparing to
the validation systems1. In Fig. 3a, several key ξo(w) and uo(w)
are shown and there is good agreement between the interpolated
LPV system and the validation points, even in the transition re-
gion. In Fig. 3b, one of the eigenvalues of A(w) that changes
with the wind is shown. Again, the eigenvalues generally are well
predicted with the largest errors in the transition region. Finally,
the normalized nonzero entries of B(w) are shown in Fig. 3c.
There are some validation points with high error in the transition
region but good agreement in the other regions.

3.2 Frequency-Domain Verification
The transfer function matrix of the LPV models was studied to
understand better if the input/output relationship is accurately
predicted and compute the error in Eq. (11) in (P5). Here, we
consider the six relationships between the two key states (ωg and
Θp) and the inputs u.

1All points inW are used in the studies in Sec. 5.
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(a) Select stationary operating point values. (b) One eigenvalue ofA(w). (c) Interpolated matrix entries ofB(w).

FIGURE 3: Select stationary points, eigenvalues, and input matrix for Σw for the IEA-15.

(a) H∞ error using validation points. (b) Close prediction at w = 23 [m/s] between
blade pitch and generator speed.

(c) Largest H∞ error at w = 11.4 [m/s] between
blade pitch and generator speed.

FIGURE 4: Transfer function-based comparisons using the validation wind speed values for the IEA-15.

FIGURE 5: Two different wind inputs used in the Time-Domain
Verification simulations.

The H∞ norm error between the training and validation sys-
tems and the interpolated systems is shown in Fig. 4a. The errors

at the training points are near zero, as expected using interpola-
tion. However, the systems derived from the transition region (8–
12 [m/s]) have the highest error compared to the other regions.
This figure shows how advanced sampling strategies could be
used to better sample from regions of high error. Additionally,
the transfer functions between β and ωg are shown in Figs. 4b
and 4c with a close prediction and largest H∞ error, respectively.

3.3 Time-Domain Verification
The final comparisons were based on (P6) using OpenFAST to
determine the nonlinear response of Σ. Using the same input tra-
jectories, three different models (Σ, Σw, and Σo using the average
wind speed wavg) are simulated, and then the resulting state tra-
jectories are compared. Two different input sets were simulated.
The wind inputs (step-like and turbulent) are shown in Fig. 5 (and
the nonzero trajectories for β and τ f are not shown).

From the results, we see that Σw captures the nonlinear re-
sponse from OpenFAST more accurately that Σo using wavg. In
the first study (S1), wavg = 12.8 [m/s]. Early in the simulation,
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(a) Platform pitch (S1). (b) Generator speed (S1). (c) Platform pitch (S2). (d) Generator speed (S2).

FIGURE 6: Model validation simulations between nonlinear Σ, LPV Σw, and LTI Σo using wavg models.

(a) Select stationary operating point values at
w = 11.4 [m/s].

(b) One eigenvalue ofA(mr) at w = 11.4 [m/s]. (c) H∞ error using validation points.

FIGURE 7: Select stationary points, eigenvalues , and H∞ error for all elevenmr for the IEA-15.

when the wind speed value is far away from wavg, we see that
the Σo using wavg produces inaccurate results for Θp in Fig. 6a
and ωg in Fig. 6b. In the second study (S2), wavg = 15.7 [m/s],
and the wind profile is generally in a region where the dynam-
ics are more predictable between wind speeds (cf. Figs. 3 and 4).
Because of this property, all the model responses are similar, but
again Σw more closely follows Σ. The simulation results for Θp
and ωg are in Figs. 6c and 6d, respectively.

Using all the different comparisons, it was concluded that
the LPV model Σw can with reasonable accuracy, capture the dy-
namics of the considered FOWT.

3.4 Interpolation Based on Platform Mass
The model Σw just presented was obtained using a particular in-
stance of the system’s plant design, denoted by xp in Sec. 1.1.
However, we also want to consider the design impacts of a single
plant design parameter, namely the platform mass. For such an
investigation, using a collection of various values of the platform
mass M , a full set of linear models Ω corresponding to W are
obtained. A similar interpolation scheme and analysis are carried
out in this additional dimension.

Similar tests to the ones outlined in the previous sections
were carried out to check the predictive accuracy of interpolation
based on the platform’s mass. Denoting the nominal platform
mass as mr = 1, a total of eleven mass value fractions between
0.2 and 1.2 were used in this study. The nominal platform spec-
ifications are available at Ref. [48]. Stationary operating points,
eigenvalues of A(w) for w = 11.5 [m/s], and the H∞ norm error
between the training and validation mass points for wind speeds
in the three different regions are shown in Fig. 7. From these
results, we see that interpolation based on M is generally well
behaved, potentially more so than the wind speed dimension.

4 CONTROL CO-DESIGN PROBLEM FORMULATION

This section describes the nested CCD problem constructed us-
ing the LPV models from Sec. 2 to study the impact of various
stability constraints on the LCOE for the considered single de-
vice FOWT.
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4.1 Outer-Loop Plant Design Problem Formulation

The outer-loop plant optimization problem in the nested CCD ap-
proach employed here is centered around the LCOE calculation
in Eq. (1). In this calculation, the total lifetime cost is estimated
as follows:

Cn =
I(xp)
(1 + r)

+

n∑
k=1

O
(1 + r)k (13)

where I(xp) is the investment cost that depends on the plant de-
sign, O are the annual operating costs, r is the annual discount
rate, and n is the expected lifetime of the system in years. For
this study, we created a low-fidelity cost and scaling model for
the blades, generator, nacelle, and tower from Refs. [49–52].

Here, we will be considering platform mass as the key plant
design variable. Different platform studies use different cost
models, and these cost models depend on the cost per tonne of
the materials used to construct the platform. The IEA-15 turbine
used in this study is a semisubmersible platform. The constituent
materials used for constructing the platform are steel, fixed bal-
last, and outfitting, and their nominal masses and costs per tonne
are from Ref. [48], The cost of the platform relative to the nomi-
nal platform design is:

Cplatform = mrCnominal (14)
where mr is a unitless ratio between the platform’s mass and the
nominal platform mass and Cnominal = 15.4 MM$.

The total lifetime energy output is determined using a repre-
sentative year long energy production calculation using m opera-
tional scenarios:

E =

m∑
k=1

τkP̄∗k(w(t),xp) (15)

where k is the operational scenario, P̄∗k(·) is the power, and τk is
the expected time that the operational scenario occurs over one
year. The expected average power for scenario k is determined by
optimizing the dynamics and control for the given plant design
and wind input. This control-focused subproblem of the nested
CCD coordination strategy will be defined in the next section.

Finally, the annual energy production (AEP) is computed
with:

AEP = ηuE (16)
where 0 ≤ ηu ≤ 1 is the expected uptime ratio. Then the expected
total energy output over n years is:

En =

n∑
k=1

AEP
(1 + r)k (17)

Therefore, LCOE = Cn/En, and the complete outer-loop op-
timization problem is:

min
xp

LCOE(xp) (18a)

subject to: Lp ≤ xp ≤Up (18b)
where only simple upper and lower bounds on the plant variables

are considered at this time (although more complex plant-only
constraints can be readily incorporated).

Note that for a fixed plant, the solution for each P̄∗k(xp)
can be determined through independent minimization problems.
Therefore, the control subproblems can be solved in parallel, re-
ducing computational costs.

4.2 Control Subproblem for a Specific Design Load
Case

The control subproblem’s goal is to understand the impact of the
control decisions on system response, power production, and ul-
timately the LCOE design objective. An open-loop optimal con-
trol problem is constructed to maximize the power produced for
a given operational scenario or design load case (DLC). The op-
timization formulation is presented using the original (ξ,u), but
the linear time-varying transformation in Eq. (5) based on the
wind-dependent operating point is applied so that (ξ∆,u∆) are
the states and controls for this subproblem.

The energy produced by the turbine is:∫ t f

0
P(t)dt =

∫ t f

0
ηgτg(t)ωg(t)dt (19)

where ηg is the generator efficiency. Note, the control term τg
appears linearly in the objective term Eq. (19). The presence of
linear control terms in the objective function with linear dynam-
ics can give rise to singular arcs [53] as the control trajectory
cannot be uniquely determined. To help mitigate this issue, a
quadratic penalty term is introduced in the objective term:

Π(t) = uT
[
10−8 0

0 108

]
u (20)

where values in this penalty matrix were identified according to
the method discussed in Ref. [15].

The linear dynamic constraints included using Σw from
Eq. (8) are:

dξ∆

dt
=A(w)ξ∆ +B(w)u∆−

∂ξo(w)
∂w

dw
dt

(21)

where the initial state values correspond to the state operating
points for w(0):

ξ(0) = ξo(w(0)), or equivalently ξ∆(0) = 0 (22)
In order to protect the generator components from excess

electrical loads and the nacelle from the dynamic loads, an upper
bound for generator speed ωg is set restricting the speed to the
rated speed of the turbine:

ωg(t) ≤ ωg,max (23)
To account for the stability of the FOWT system, an upper bound
on the platform pitch tilt Θp is included:

Θp(t) ≤ Θp,max (24)
Maximum and minimum value constraints are placed on the con-
trols blade pitch β and the generator torque τg, according to the
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TABLE 1: CCD problem parameters.

Variable Value Units
ωg,max 0.7913 [rad/s]
Θp,max 6 [deg]

Pmax 15 [MW]
τg,max 19.62 [MNm]
βmax 0.3948 [rad]
ηg 96.55 %

values prescribed in Ref. [12] :
0 ≤ τg(t) ≤ τg,max (25a)
0 ≤ β(t) ≤ βmax (25b)

An additional constraint on the pitch rate is included to ensure
that the rate of change of the blade pitch is within practical limits:

dβ
dt
≤ β̇max (26)

Another constraint is included to ensure the power gener-
ated by the turbine does not exceed the rated power. Here we
approximate the nonlinear power constraint τgωg ≤ Pmax with
the following linear path constraint:

τgωg,max +τg,maxωg ≤ Pmax +τg,maxωg,max (27)
Now, the complete control subproblem formulation is:

min
u∆,ξ∆

∫ t f

0
(−P(t) +Π(t))dt (28a)

subject to: Eqs. (21)− (27) (28b)

which will yield the average power P̄∗ =
∫ t f

0 P(t)dt/t f needed in
Eq. (15). It can be observed that Problem (28) has only quadratic
objective function terms and linear constraints; therefore, can be
classified as a LQDO problem (see Sec. 1.4).

5 RESULTS
In this section, we describe the results of an LCOE-focused
CCD study using the IEA-15 turbine [12] supported by a floating
semisubmersible platform [48]. The values for the CCD problem
parameters defined in Sec. 4.2 are given in Table 1. Here, we
consider six design load cases (DLCs) based on the input wind
speed trajectories shown in Fig. 8. The average power values are
combined using Eq. (15), with the weights (in days):

τ =
[
23.0 92.2 115.3 54.0 46.1 34.6

]
(29)

which corresponds to an average wind speed of 13.4 [m/s], and
the wind distribution is approximately a Weibull distribution.

The LQDO optimal control problems based on Problem (28)
are solved using DTQP, an open-source Matlab-based toolbox us-
ing the direct transcription (DT) method and quadratic program-
ming [9, 54]. Each problem was discretized using 2000 mesh
points, with an observed relative objective function error bound

FIGURE 8: Design load cases considered based on an input wind
speed trajectory.

of approximately 10−4.
A single critical plant design variable was considered as this

time, namely the platform’s mass. A sensitivity approach was
used to explore how the plant design decisions impact the sys-
tem cost and performance. More interpolated mass values were
added near the lower bound of mr. In order to understand the
impact of platform mass on the system stability, power produc-
tion, and subsequently the LCOE, several constraint bounds on
the platform pitch tilt Θp were explored. More specifically, Θp
was constrained to four different values between 3−6◦. Although
no wave/current forces are included as disturbances at this time,
these different constraint values on Θp will roughly indicate per-
formance in more dynamic wave and current conditions.

Overall, there were 32×6×4 = 768 inner-loop control sub-
problems solved for each combination of mass, DLC, and Θp,max.
The computational cost was 37 minutes on a desktop workstation
with an AMD 3970X CPU, 128 GB DDR4 2666 MHz RAM,
Matlab 2021a update 1, and Windows 10 build 17763.1790. The
code for inner loop studies mentioned in the previous sections is
available at Ref. [54].

5.1 Results for a Single Control Subproblem
Figure 9 summarizes the optimal control results for 1 of the 264
problems with mr = 0.7, DLC 6, and Θp ≤ 4◦. The optimal tra-
jectories for the generator speed and platform pitch are in Fig. 9a.
We see that the constraint Θp ≤ 4◦ and others in Table 1 are satis-
fied. DLC 6 is in the rated-power region, so we might expect
pitch control to be active and the generator torque to be held
roughly constant in Fig. 9b [26]. However, to satisfy the plat-
form pitch constraints, we see that the generator speed does need
to decrease when the pitch constraint becomes active.

To better understand the optimal control results in other op-
erating regions, Fig. 10 was constructed to show the behavior
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(a) Select states ωg and Θp. (b) Controls β and τg. (c) Power τgωg.

FIGURE 9: Optimal control results with mr = 0.7, DLC 6, and Θp ≤ 4◦.

(a) Wind speed vs. generator power. (b) Wind speed vs. β. (c) Wind speed vs. τg.

FIGURE 10: Select optimal control results using LPV model vs. controller regulation curves with mr = 1 and Θp ≤ 6◦.

with nominal mass mr = 1 and the largest pitch constraint value
Θp ≤ 6◦. We see in Figs. 10b and 10c that the results generally
follow the expected trends when compared to the controller reg-
ulation from Fig. 2. Overall, the optimization-based approach
seems to favor larger torque values and slower speeds than the
regulation curves. The results from the DLCs in the below-
rated and transition regions are encouraging, as a combination
of torque and pitch control is utilized. In some regions, the pitch
control is active while torque is held constant and vice versa.
Therefore, the optimizer identifies results for all regions in agree-
ment with traditional wind turbine controls. Overall, these re-
sults, in combination with the model validation in Sec. 3, demon-
strate the validity of the considered LPV models in FOWT open-
loop control studies.

5.2 Average Output Power vs. Platform Mass
In Fig. 11, the trends between the average power P̄∗6(mr) for DLC
6 are shown for the four tested values of Θp,max. The primary
method used to control the platform pitch and ensure system sta-
bility is the blade pitch β, but β is also tightly coupled to the

FIGURE 11: Average output power for DLC 6 vs. platform mass.

generator speed. To satisfy smaller, more challenging values of
Θp,max, the optimal control solution has higher values of blade
pitch, sacrificing generator speed. Thus, for these more challeng-
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(a) LCOE vs. platform mass. (b) LCOE vs. platform mass for lower mass percentages.

FIGURE 12: LCOE vs. platform mass.

ing constraint values, the power produced is lower on average.
Additionally, the platform mass has a significant effect on

the average power production. We see that heavier platforms
satisfy the stability constraints with little to no compromise on
power generation (i.e., average power is nearly at 15 MW). In
comparison, lighter platforms have to sacrifice power generation.
Furthermore, in Fig. 11 several points are marked in a lighter
shade to indicate that at least one infeasible DLC was identified,
i.e., under the constraints imposed in the control subproblem and
with the given platform mass, no feasible solution was found.
Two trends are observed for these infeasible cases; they happen
predominantly for platforms with lower masses and DLCs in the
transition region, e.g., DLCs 2 and 3 from Fig. 8. As mentioned
previously, the blade pitch is used to control the platform pitch.
For platforms with lower masses, the pitch control needs to be
close to or at its maximum value to satisfy the tighter platform
pitch constraints. For the infeasible cases, the maximum allow-
able pitch value is not sufficient to satisfy the constraints.

5.3 LCOE vs. Platform Mass
Now, combining the DLCs using the weighting scheme in
Eq. (15), we can determine the total energy output. In addition,
utilizing the total cost model from Sec. 4.1, LCOE can be esti-
mated. These estimates of LCOE have been calculated for n = 30
years with a r = 7% discount rate. It is important to emphasize
that this estimate of LCOE only considers the capital cost of the
turbine and platform components and maintenance cost. Other
“balance of system” costs [50] are not considered for this study
as we are only looking at a single turbine. As mentioned pre-
viously, some values of the constraints are infeasible, and the
infeasible results are included with zero generated energy. The
summarized LCOE results are shown in Fig. 12.

From these results, we see that the optimal value for LCOE
depends on the stability constraint; for large values of Θp,max, the
optimal mass decreases. This is because as the platform mass
increases, the capital cost increases. But, as indicated in Fig. 11,
lower mass values can still result in nearly maximum average
power production. Therefore, there is some optimal mass point
where the conflicting decisions of increasing energy production
are balanced with increasing platform capital costs.

For the considered reference IEA-15 turbine described in
Refs. [12, 48], Θp was constrained to 6◦ using the nominal plat-
form mass. While keeping the other plant parameters constant,
we see that the lowest LCOE, in this case, is achieved using 40%
of the nominal platform mass. However, this result is subject
to modeling assumptions, optimal control operation, and lack of
safety factors, but it can still help guide the final design. Addi-
tionally, the hydrodynamic and hydrostatic stability of the dif-
ferent platforms has not been evaluated in this study. These in-
vestigations will also limit the bounds on the platform mass and
impact the final design.

6 CONCLUSION

In this work, we discussed the use of linear parameter-varying
(LPV) models for control co-design (CCD) of floating offshore
wind turbines (FOWTs). High-fidelity models of FOWTs are
described by highly complex and nonlinear models. Unfortu-
nately, these models are often too costly to use in early-stage
system design and evaluation. Using linearized models based on
these nonlinear systems is a popular method to offset the com-
putational costs involved. Here, we describe a class of linear
parameter-varying (LPV) models that realize more accurate pre-
dictions of a system’s dynamic behavior over a large range of
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operating points and are shown to be useful for early-stage CCD
studies of FOWTs.

The specific FOWT system considered was the IEA-15 ref-
erence turbine [12] on a semisubmersible platform [48]. The
LPV models based on the wind speed parameter showed good
general agreement in both nonlinear simulation comparisons and
general optimal control trends. The primary study investigated
the system’s dynamic stability, power production, and ultimately
the levelized cost of energy (LCOE). The single plant decision in
this study was the platform’s mass, and the optimal LCOE results
indicated that the platform mass could be reduced to 30–60% of
its nominal value and still satisfy the platform pitch constraints.
However, several additional factors should be investigated before
making a specific recommendation.

It remains future work to incorporate more detailed and so-
phisticated outer-loop plant design optimization, including the
impact of plant decisions like tower hub height and blade length
on platform stability and power production in the context of the
LCOE. With additional plant decisions, the LCOE calculation
should also be amended to reflect the omitted factors. Addition-
ally, we hope to study the effect of wave and current excitations.
Finally, in order to address the realizability of the open-loop op-
timal control solutions, work is needed to realize robust, imple-
mentable control systems, which may be informed by the optimal
operation identified in this study [2, 42].
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