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Abstract: Our recent experimental work showed that asymmetry is needed for surface textures to 

decrease friction in full-film lubricated sliding (e.g. thrust bearings) with Newtonian fluids; 

textures reduce the shear load and produce a separating normal force [1]. However, standard slider 

bearing theory cannot explain the sign of the observed normal thrust, and any effort to optimize 

surface textures would be premature if modeling and simulations are not validated with 

experiments. Here we model the flow with the Reynolds equation in cylindrical coordinates, 

numerically implemented with a pseudo-spectral method. The model predictions match 

experiments, rationalize the sign of the normal force, and allow for design of surface texture 

geometry. To minimize sliding friction with angled cylindrical textures, an optimal angle of 

asymmetry β exists. The optimal angle depends on the film thickness but not the sliding velocity 

within the applicable range of the model. Outside the scope of this paper, the model is being used 

to optimize generalized surface texture topography [2]. 
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1. Introduction 

We have previously shown experimentally (setup shown in Figure 1) that asymmetry is 

required to reduce friction in full film lubrication by reducing the apparent shear stress and by 

producing a separating normal force between the two surfaces [1, 3]. There, we minimized 

experimental effects (inertia, gap accuracy, non-parallelism, and surface tension) in order to obtain 

accurate results with gap-controlled bi-directional sliding conditions, and the normal forces were 

attributed to viscous effects up to gap based Reynolds number Re 1.21h

Rh




  . We choose 

this data set for validating a design-driven model because it involves asymmetric depth profiles 

(slanted-bottom circular texture) with the most complete data set including bi-directional sliding, 

shear and normal load measurement, controlled gap conditions, and precisely known texturing 

profiles. Shen and Khonsari [4] performed similar experiments with millimetric sized textures, but 

they focused on single directional sliding with cavitation effects. The data set that we obtained is 

simpler, because cavitation effects are not included.  

Previous numerical studies with asymmetric surface textures [5, 6] are unable to correctly 

capture the sign of the experimental normal forces (Figure 2). Traditional slider bearing theory 

(where the pressure is set equal to zero at the periodic boundaries of the texture) is also unable to 

correctly capture the sign of the normal force [7]. Our experiments show that a positive normal 

force is generated with a diverging wedge, i.e. as if a standard slider bearing were operated in the 

reverse direction, which is not predicted by previous studies [5, 6, 7]. Given those non-trivial 

experimental results, here we wish to (i) determine a theoretical understanding for the velocity-

dependent sign of the observed normal force, and (ii) validate a mathematical model that can be 
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used for design optimization of the surface textures (i.e. a design-driven model). Without the 

validation performed here, any optimization efforts would be premature.  

 

 

 

Figure 1: Experimental and numerical setup. (A) experimental setup previously used [1]; lower 

disk textured with ten periodic regions, each with an identical circular texture. (B) experimental 

periodic texture cell.  Simulations involved one periodic textured cell. (C) simulated periodic 

texture with top flat plate moving in the direction of positive angular velocity (note: z axis stretched 

compared to r).  

 

 

 

 

 



4 

 

 

Figure 2: Standard slider bearing theory cannot predict the generated thrust in the textured disk 

experiments of Schuh and Ewoldt [1]. (A) standard slider bearing, pressure is zero at periodic 

boundaries. (B) textured disk experiments, pressure at periodic boundaries is not explicitly 

controlled; centerline of a single periodic texture and full textured disk are shown. (C) comparison 

of experimental normal force at h0=269 μm [1, 3] to a standard slider bearing. The experiments 

show a positive normal force for a diverging wedge, which is the opposite sign predicted by the 1-

D slider bearing.  

 

To achieve both goals, we seek the simplest model that can capture the main physics of the 

problem and be solved quickly, because the problem will be iteratively solved in the design 

optimization processes. Since our experimental normal forces are due to viscous effects, this 
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suggests that the Reynolds equation [7] can be used for modeling our system instead of the full 

Navier-Stokes equations. The Reynolds equation is a single simplified form of the conservation of 

mass and momentum equations for incompressible Newtonian fluid flow. It neglects inertial 

effects and some spatial gradients of velocity and pressure due to a large difference of length scales 

in the problem (thin gap). Several numerical studies on the effects of surface textures have been 

performed using the Reynolds equation [8, 9, 10, 11, 12]. Journal bearings [13, 14], parallel sliders 

[15], and conforming contacting surfaces [16, 5] have been examined and show that the addition 

of surface textures can increase the load carrying capacity of these scenarios. Optimization studies 

have also been performed to determine an optimal texture profile [5, 17, 18, 19], although the 

optimal texture profile was selected from a specified set of allowable surface textures and not from 

a generic surface texture design space (e.g. arbitrarily parameterized surface height profiles, which 

we are pursuing [2]).  

Optimization efforts require many numerical simulations to be performed. Therefore, we 

have considered the different numerical techniques available to solve the Reynolds equation and 

select a method that will achieve a sufficiently accurate solution for an acceptably low 

computational cost. The most commonly used methods for solving the Reynolds equation are the 

finite difference method (FDM) [8, 9, 10, 13, 14, 15, 16, 20, 21, 22], finite volume method (FVM) 

[22, 23], finite element method (FEM) [22, 24, 25], and spectral/pseudo-spectral method [22, 26, 

27].  

Each method has its own advantages and disadvantages (which are discussed in detail the 

Supplemental Information); for our work here, we use the pseudo-spectral method, which can give 

accurate solutions for a small number of grid points [22] due to the method’s exponential error 
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convergence [28, 29, 30], allowing for faster simulations. Other methods could also have been 

used, as described above; however, we use the pseudo-spectral method because it guarantees that 

the pressure solution is continuous, differentiable, and integrable [31], which is important because 

we want to compare the normal force (integral of pressure) and shear stress (from derivatives of 

velocity, and thus derivatives of pressure) from simulations to experiments. 

Design optimization is also aided by the smoothness of the pressure field (and stress field) 

calculated using the pseudo-spectral method. If the solution were non-smooth (for example, that 

calculated by the FDM), then the non-smooth mapping from design variables (surface texture 

profile) to objective function (friction) could result in numerical difficulties when attempting to 

use a gradient-based optimization algorithm. This problem can be resolved by using smooth 

approximation functions in the simulations, which the pseudo-spectral method does. 

We describe implementation of the pseudo-spectral method to solve the steady-state 

Reynolds equation in cylindrical coordinates for generic surface textured thrust bearings. The 

numerical results are compared to an analytical solution and non-trivial experimental data [1, 3] 

to verify the numerical method. The experimental results show that the textured disks do not act 

like traditional slider bearings, meaning the work presented here is important for understanding 

the production of normal forces with textured disks. The agreement is not perfect, but the 

disagreement seems to come from experimental imperfection. Importantly, the model captures the 

sign and reasonable magnitude of the normal force (which previous models are unable to do). The 

verified numerical code is then used to determine the optimal asymmetric angle of a tilted elliptical 

“hole” texture for decreasing friction by finding the local minimum of the effective friction 

coefficient curve, which is a function of the gap, but not the sliding velocity in our model 
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formulation. This analysis is performed in the context of a thrust bearing, but is applicable to 

general applications with full-film lubrication.  

 

2. Governing Equation 

We model our system using the 2-D steady state Reynolds equation in cylindrical 

coordinates, which is derived from mass conservation for an incompressible fluid and the Navier-

Stokes (conservation of momentum) equations in cylindrical coordinates [32], given as  

 0v    (1) 

 2Dv
p v

Dt
       (2) 

where ρ is the fluid density, p is the pressure, η is the fluid viscosity, v  is the velocity vector, and

D

Dt
 is the material derivative. These equations can be simplified and combined through several 

assumptions that neglect certain gradients due to separation of length scales and a low Reynolds 

number (see Supplemental Information) to give 

 
3

31 1
6 ,

p h p h
rh

r r r r r


  

      
    

       
  (3) 

which is a linear, second order, non-constant coefficient partial differential equation for the 

pressure that satisfies both conservation of mass and momentum. 

The velocity boundary conditions (coordinates in Figure 2) are  

 
at  z=0:   and  0       

at  :  0 

r z

r z

v r v v

z h v v v





   

   
  (4) 
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which from integrating conservation of momentum (see Supplemental Information) gives the 

velocity field as 

 

 

 

2

2

1

2

1 1
.

2

r

p
v z zh

r

p h z
v z zh r

r h




 


 



  
    

  

  (5) 

If the gap height ( , )h r   is prescribed (and boundary conditions for the pressure in the r and θ 

directions are also prescribed) then Equation (3) can be solved explicitly for the pressure and used 

in Equation (5) to calculate the velocity field.  

 

Figure 3: Diagram showing the geometric quantities used to define the simulated periodic surface 

textures. Ri is the inner radius, Ro is the outer radius, Rc is the radius to the center of the texture, Rt 

is the radius of the texture, and φ is the periodic spacing of the surface textures. Boundary 

conditions are also shown.  
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To solve Equation (3), boundary conditions on the pressure must be imposed, as shown in 

Figure 3. In the θ direction, we use periodic boundary conditions, given as 

 

   

   3 3

/2 /2

/ 2 / 2

/ 2 | / 2 | .

p p

p p
h h   

   

   
 

 

   

 
   

 

  (6) 

where φ is the span in the θ direction of the periodic texture, and the h3 front factor in front of the 

pressure gradient accounts for the possibility of a different gap height at the start and end of the 

periodic cell. At the inner radius, we impose a Neumann boundary condition, given as 

 | 0
ir R

p

r






  (7) 

to impose symmetry and regularity in the physical space [33]. The boundary condition at the outer 

radius can either be Dirichlet   0 0p r R   or Neumann 
0

| 0r R

p

r


 
 

 
; the selection of one over 

the other is non-trivial, and will be discussed in more detail in section 5.1. 

 

3. Formulation and Solution Procedure 

We write our own code for using the pseudo-spectral method to solve Equation (3) for the 

pressure so that it can be coupled to optimization tools (for optimization studies outside the scope 

of the work presented here [2]). The pseudo-spectral method solves the governing partial 

differential equation using a weighted residual technique (WRT) that computes an approximate 

solution to the differential equation [31, 34, 35]. The details of the solution method are given in 

the Supplemental Information. This includes the basis functions used in the approximation, 

numerical evaluations of the integrals used in the weak formulation, the resulting matrix form of 

the problem, and implementation of boundary conditions. The custom solver is written in 
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MATLABTM and takes in a given gap height profile h(r,θ), fluid viscosity η, and angular velocity 

Ω and outputs the pressure profile p(r,θ).  

 The pressure obtained from the Reynolds equation solver will be used to calculate the 

normal force of the flat plate through an integration of the pressure over the area, calculated as  

 
2

0

,
o

i

R

N

R

F prdrd



     (8) 

and it can be seen that since inertial effects are negligible, normal force is proportional to viscosity 

and rotation speed 

 ~ .NF    (9) 

Derivatives of pressure are used to determine the velocity field through Equation (5), and 

derivatives of velocity components determine the shear stress on the top plate 

 0 0

1
| | .z

z z z

vv

r z


 


 

 
  

  
  (10) 

 This is integrated to calculate the total shear load in terms of torque  

  
2

0

0

| ,
o

i

R

z z

R

M r rdrd



      (11) 

and it can again be seen that the load scales linearly with viscosity and rotation speed 

 ~ .M    (12) 

Using the torque and the normal force, we define an effective friction coefficient µ*, similar to 

previous work [1], as  

 
* /

N

M R

F
    (13) 
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which is independent of the fluid viscosity or speed of rotation and only depends on the texture 

gap height profile.  

 To verify the solution method, the numerical solution is compared to an analytic solution 

of the Reynolds equation in the limit of a thin radial dimension. The analytic solution is obtained 

in the limit that 1,o iR R   causing the pressure to not vary in the r direction, and that  h h   

only, which will be specified. We choose a linearly varying gap height profile and details of the 

profile are given in the Supplemental Information. These assumptions result in a 1-D ordinary 

differential equation for the pressure, allowing for an analytical solution to be obtained. Solving 

for the pressure and integrating in the r and θ directions gives the true normal force trueF  as  

 
 

 

4

2

2

2

1

1
3 1

ln 2
2 11

i

o
o

true o

R

RR
F R

h

 
 



  
                 

    
  (14) 

where 
1

oh

h
  and ho and h1 are the gap heights at the begging and end of the texture, respectively.  

 The numerical normal force on the flat plate is obtained using Gauss-Lobatto-Legendre 

quadrature on the computed pressure by 

/2

/2

o

i

R

comp comp

R

F p rdrd








   , where compp  is calculated using 

the full 2-D form of the Reynolds equation (Equation (3)). The error between the computed normal 

force and the true normal force is calculated as  

 
| |

| |

true comp

true

F F

F



   (15) 

and is shown in Figure 4 for Ro=20 mm, Ro-Ri=10-6 mm, η=1.4 Pa s, and φ=π/5, Ω=10 rad/s, h0=1 

mm, and h1=0.5 mm. The expected exponential decay in the error is observed [28, 29, 30], 
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verifying the numerical method. To validate the predictive capabilities, we compare to experiments 

with textured disks.  

 

 

 

Figure 4: Error analysis of the computed solution compared to the analytic solution of the Reynolds 

equation for a thin strip (Ro-Ri=10-6) defined in Equation (14). Conditions described in Section 3. 

Exponential decay is observed for the error, which matches the expected convergence rate for the 

numerical method used. We use N=65 for computations with the textured surfaces to avoid 

pixilation of the texture. 
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4. Textured Disk Modeling 

In our previously measured experimental results for a surface textured thrust bearing [1], 

the surface textures are cylindrical holes cut at an angle β, which creates an elliptical top profile. 

We model our surface textures with an elliptical top profile, similar to the experiments. Figure 3 

shows the geometric quantities used to define the surface textures; the finite inner radius is needed 

so that the 1/r terms do not diverge. We found that the normal force converged when Ri<0.02 mm 

(Ri/Ro<0.1%); details on this are given in the Supplemental Information. The geometric values for 

all the simulated textures are given in Table 1. Examples of the simulated texture surfaces are 

given in Figure 5.   

Table 1: Geometric parameters used to define all the simulated surface textures.  

Geometric Parameter Value 

Ri 0.01 mm 

Ro 20 mm 

Rc 14.25 mm 

Rt 3 mm 

φ 2π/10 rad 

 

 



14 

 

 

Figure 5: Simulated texture profiles. (A) spatial discretization used to simulate the textures. (B) 

symmetric texture. (C) asymmetric texture. (D)-(E) direction of motion for each surface texture. 

Asymmetric textures of varying angles were tested, including values given in Table 1 used in 

experiments by Schuh and Ewoldt [1]. 
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4.1 Selecting Boundary Conditions 

The boundary conditions in the θ direction used to solve the Reynolds equation are given 

in Equation (6). For the surface textures simulated, ( / 2) ( / 2)h h       , which simplifies 

the θ boundary conditions to 

 

   

/2 /2

/ 2 / 2

| |

p p

p p
   

   

 
 

   

 


 

  (16) 

which is implemented numerically through B
 as 

 

0 0 ... 0 1

1 0 ... 0 0

.| | | | |

0 0 ... 1 0

0 0 ... 0 1

B

 
 
 
 
 
 
  

  (17) 

   As previously stated, the boundary condition at the outer radius can be selected from either 

a Dirichlet (fixed pressure) or Neumann (fixed zero gradient in r direction) boundary condition. 

Previously, the Dirichlet boundary condition has been used [4, 40] where the pressure at the outer 

radius has been set to zero or atmospheric pressure (which may apply for textures surrounded by 

excess fluid). The Neumann boundary condition has not been used, but we argue here that it is the 

necessary boundary condition for our experiments and this choice may change the sign of the net 

normal force for some texture geometries. Since the Reynolds equation is a linear partial 

differential equation, the solution is heavily dependent on the boundary conditions used; therefore, 

we present a quick comparison between the two boundary conditions.  
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Figure 6: The sign of the normal force (thrust) is sensitive to boundary conditions, but only if the 

textured surface extends to the boundary. (A) a surface texture that extends over a finite area, and 

(B) a texture that extends to the boundary r=Ro for h0=269 μm and β=5.3°. When using the surface 

texture that extend over a finite area, changing boundary conditions does not change the sign of 

the normal force; however, changing the boundary conditions changes the sign of the normal force 

for a texture extending to the boundary r=Ro.  

 

 Figure 6 compares how the two boundary conditions affect the normal force when using 

the experimental surface textures and when using a textured profile that extends to the boundary 

r=Ro. When using the experimental surface textures, changing the boundary condition does not 

change the sign and magnitude of the normal force. This is because near the outer radius the texture 
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is flat, thus the flow is approximately boundary driven simple shear, causing only v  to be non-

zero; this flow satisfies both boundary conditions, p=0 and 0
p

r





 at r=Ro.  

However, when using a surface texture that extends to the boundary r=Ro, the sign of the 

normal force changes when the boundary condition is changed. This is because using the Dirichlet 

boundary condition   0op r R   results in a zero pressure gradient in the flow direction 

| 0
or R

p








, thus from Equation (5) v  is only due to the drag flow and depends on the gap height 

h. If the gap height changes in the flow direction, 0
h







, 0

v







, and from mass conservation 

Equation (1) it may require 0rv

r





. That is, there may be radial outflow or inflow for the p=0 

Dirichlet boundary condition. In contrast, the Neumann boundary condition | 0
or R

p

r






, when 

used in Equation (5), removes the radial Poiseuille flow, 0rv   at r=Ro, corresponding to a zero 

radial flux boundary at the outer radius (Equation (5)). 

 We argue that, for the experiments of Schuh and Ewoldt [1], this zero-flux condition is 

most reasonable. In the experiments, there was an oil-air interface at the outer radius. The fluid 

inside the texture did not leave the textured domain and this impermeability is consistent with the 

Neumann boundary condition at the outer radius, which is implemented numerically through 

rB I . This causes the pressure to be known up to an arbitrary constant. We use the constraint 

that the average pressure along the outer edge is zero,  
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  
/2

/2

1
, 0.op R d





 




   (18) 

This can be interpreted as removing any surface tension pressure jump effects on the normal force, 

which was also done experimentally [1].  

 

4.2 Resultant Normal and Shear Loads 

We previously reported the experimental normal forces produced by the surface 

textures [1]. The simulated normal force is the integral of the total traction stress in the z direction,  

  
/2

0 0

/2

| |
o

i

R

N tex z zz z

R

F N p rdrd





  



     (19) 

where texN  is the total number of periodic cells on the thrust bearing, which sets the domain φ,  

 
2

texN


    (20) 

and zz  is the shear stress on the z surface in the z direction, for a Newtonian fluid given as 

 2 .z
zz

v

z
 





  (21) 

Using the continuity equation given in Equation (1) allows Equation (21) to be rewritten as 

  
1 1

2 .zz r

v
rv

r r r

 


 
   

  
  (22) 

Substituting Equation (5) into Equation (22), performing the differentiation, and evaluating at z=0 

gives  

 0| 0.zz z     (23) 
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Substituting Equation (23) into Equation (19) and noting that the pressure is not a function of z 

(see assumptions in Supplemental Information) gives the final form of the computed normal force 

as  

 

/2

/2

.
o

i

R

N tex

R

F N prdrd








     (24) 

For the shear load, we reported the apparent viscosity a  measured with the surface 

textures which can also be mapped to the measured torque [1]. This involves an integration of the 

shear stress distribution, which itself depends on the velocity field. The velocity field is known 

after substituting the obtained pressure field into Equation (5). The shear stress z  is the only 

contribution to the torque and is calculated for a Newtonian fluid as 

 
1

.z
z

v v

z r


 



  
  

  
  (25) 

Scaling analysis can be performed on Equation (25) to determine the dominant effect in the shear 

stress calculation. Using the same non-dimensional values used to derive the Reynolds equation 

gives 

 

2* *

0

* *

0

1
.z

z

v h vR

h z R r









    
       

  (26) 

The Reynolds equation was derived by neglecting all terms containing 0 /h R  (and higher order 

powers of 0 /h R , see assumptions in Supplemental Information); therefore the term containing 

2

0( / )h R  
in Equation (26) must also be neglected for the analysis to be consistent. This gives the 

shear stress as  
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 .z

v

z


 





  (27) 

Substituting Equation (5) into Equation (27) allows the shear stress to be calculated as 

  
1

2
2

z

p r
z h

r h







 
  


  (28) 

 The apparent viscosity that we previously reported [1] was obtained through the 

measurement of the shear stress on the flat plate, which is obtained numerically by evaluating 

Equation (28) at z=0, giving 

 0

1
|

2
z z

p r
h

r h








 
  


  (29) 

where the negative sign on the drag flow term indicates that this portion of the shear stress acts in 

the opposite direction of the motion Ω. 

 The resultant torque M on the flat plate is calculated from a torque balance on the flat plate 

 

2

2

0

0 0

| .

R

z zM r drd



      (30) 

For comparisons with Ntex periodic domains this is  
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M N r drd







 



     (31) 

 For comparisons to our experimental results, the torque M is used to calculate the apparent 

viscosity as if the disks were separated by the nominal (minimal) gap h0 [41] as  

 
0

4

2
.a

h M
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4.3 Limitations of the Reynolds Equation 
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We can only compare the simulations to the experiments where the Reynolds equation is 

valid. Figure 7 shows the bounds where the Reynolds equation applies. Figure 7A shows the lines 

where 

 Re 0.1o
h
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    (33) 
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o

h

R
   (35) 

where ρ is the density of the fluid, η is the viscosity of the fluid, and κ is the thermal conductivity 

of the fluid. Of particular note is Equation (34) to neglect viscous heating effects that cause 

viscosity change, which was observed under some experimental conditions [1] (Assumption 4, 

Supplemental Information).  
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Figure 7: Approximate regions of applicability (shaded are) for the Reynolds equation using three 

key criteria: (i) Re<0.1 (Equation (33)) to neglect inertia, (ii) Na<0.1 (Equation (34)) to neglect 

viscous heating, (iii) h<0.1R (Equation (35)) to neglect velocity gradients in the flow direction. 

(A) angular velocity Ω versus total gap height h=h0+D. (B) angle of asymmetry β versus nominal 

gap height h0 for h<0.1R.  

 

Figure 7 shows these limits visualized as a window of operational conditions for validity 

of the Reynolds equation (shaded regions). Figure 7A shows all three criteria. Notably, the low 

Reynolds number criterion is not the limiting condition. The small gap requirement depends on 

the asymmetry angle β, as is shown in Figure 7B, which gives the maximum asymmetric angle β 

for a given nominal gap height such that Equation (35) is satisfied. For all the validity conditions, 

the thresholds could be set to smaller values for even more accurate modeling expectations.  

 

5. Results for Textured Disks 

The results from the Reynolds equation solver can be used to give general predictions for 

the performance of a surface texture in lubricated sliding. Figure 8 gives example fields that can 

be calculated after solving the Reynolds equation (fields calculated with other surface textures are 

given in the Supplemental Information). Both the velocity field and the pressure field are obtained, 

which can be used to give the shear stress on the moving plate. Both will be used in calculating 

the torque and normal force (example calculations are given in the Supplemental Information), 

which will be used to give the general performance of the surface texture. The simulated results 

can also be compared to experimental values by using the same input parameters used in the 

experiments.   
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Figure 8: Example computed fields obtained with the Reynolds equation (see Supplemental 

Information Figures S3-S7 for additional examples). The example here is for an asymmetric 

surface texture with β=5.3° and Ω=10 rad/s at h0=269 μm, which fall within the regions of 

applicability given in Figure 7. α-α* is the line for θ=0. β-β* is the line for r=Rt. These computed 

velocity and pressure fields were obtained for each texture tested with input values given in Table 

2. (A) surface texture profile, plotted as -h. (B) plot of the velocity field at z=h0/2. (C) velocity 
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field of vr and vz at θ=0°. (D) velocity field of vθ and vz at r=Rt. (E) computed pressure profile. (F) 

contour of pressure. 

 

5.1 General surface texture performance 

The simulations were run with bi-direction sliding, just as in the experiments [1]; Figure 9 

shows the non-dimensional output parameters obtained with the Reynolds equation solver with 

Rt=3 mm, Ro=20 mm, and Rc=14.25 mm; β was fixed, and h0 was varied. Figure 9A gives the non-

dimensional shear stress, defined as  

 
* .a


   (36) 

As β increases, the non-dimensional shear stress decreases. This can be understood by the simple 

explanation that a larger angle increases the texture depth, and this decreases the local shear rate 

inside the surface texture. This reduction in local shear rate leads to a reduction in local shear 

stress. This texture effect is more pronounced for smaller nominal gap height h0, thus the non-

dimensional shear stress also decreases as h0 decreases. At large values of h0, the effect of the 

texture is smaller, because the local gap height is not changing very much. At smaller values of h0, 

the effect of the textures become more pronounced, leading to a reduction in the shear stress.  

Figure 9B gives the non-dimensional normal force, defined as  
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  (37) 

If we define 
0/ 1D h    , where κ is used in Section 3 to obtain the expression for the 

analytical normal force, we can rewrite the expected scaling for the normal force in Equation (14) 

as  
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The non-dimensional normal force in Figure 9B follows this scaling. When h0 is very large, the 

effect of the texture is very small, causing the normal force to go to 0. As h0 decreases, the normal 

force increases until it goes through a local maximum (suggesting an optimal D/h0) and then decays 

to 0, as predicted by Equation (38). 

Figure 9C gives the coefficient of friction, defined using Equation (13), which is essentially 

the ratio between the non-dimensional shear stress and the non-dimensional normal force. The 

coefficient of friction increases with β due to the reduction in normal force seen in Figure 9B, but 

then plateaus due to the reduction in both the shear stress and the normal force. The simulations 

are able to correctly predict the sign of the normal force (Figure 2 and Figure 9B), which the simple 

1-D Cartesian models were unable to do.  
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Figure 9: Prediction for varying dimensionless gap height D/h0 for fixed angle β where 

 2 sintD R   from the Reynolds equation solver where Rt=3 mm, Ro=20 mm, and Rc=14.25 

mm. (A) non-dimensional shear stress (Equation (36)). (B) non-dimensional normal force 

(Equation (37)). (C) coefficient of friction (Equation (13)). The simulations are able to predict the 

correct sign of the normal force (compare with Figure 2), which simple 1-D Cartesian models are 

unable to do.  
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 In the experiments, h0 was fixed, and β was varied. Figure 10 shows the non-dimensional 

parameters obtained from the Reynolds equation solver, again for Rt=3 mm, Ro=20 mm, and 

Rc=14.25 mm, but for fixed h0 and varied β. Figure 10A gives the non-dimensional shear stress. 

At larger nominal gap heights, the textures do not reduce the local shear stress as much as at smaller 

gap heights, resulting in a larger shear stress reduction at smaller nominal gap heights. Figure 10B 

gives the non-dimensional normal force, and shows that for each gap height, there is an optimal β 

for producing a normal force with asymmetric surface textures. This change in the optimal β can 

be explained through Figure 9B, where the optimal D/h0 is independent of β. Therefore, as h0 

changes, the optimal β must also change for the optimal D/h0 to remain constant.   The scatter in 

the data is most likely due to competing effects of increasing β on increasing D/h0 (Figure 9), 

resulting in a smaller normal force, while also increasing the size of the surface texture, resulting 

in a larger normal force. Figure 10C gives the coefficient of friction, and also shows that for each 

gap height, there is an optimal β for decreasing friction with asymmetric surface textures. The 

scatter in the friction coefficient comes from the scatter in the normal force.   
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Figure 10: Predictions for varying angle β with fixed texture cylindrical radius Rt and varying h0; 

Rt=3 mm, Ro=20 mm, and Rc=14.25 mm. (A) non-dimensional shear stress (Equation (36)). (B) 

non-dimensional normal force (Equation (37)). (C) coefficient of friction (Equation (13)). At each 

gap height, an optimal value of β is found for producing a normal force and decreasing the 

coefficient of friction.  

 

 

 

 

 

 

Table 2: Input parameters for simulations when comparing to experiments of Schuh and Ewoldt 

[1]. 
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Parameter Input Values 

h0 1019, 519, 269 µm 

|Ω| [0.1,10] rad/s 

β 5.3°, 9.4°, 14°, 21.7° 

 

 

5.2 Comparison to experiments 

We want to compare theoretical predictions for surface texture performance to 

experimental results [1]. The same input parameters used in the experiments are also used in the 

simulations, and the input values used are given in Table 2. Supplemental Information (Figures 

S11-S13) give general predictions for these experimental conditions, and we make direct 

comparison to experiments here in Figures 11, 12, and 14. 
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Figure 11: Comparison of the shear forces obtained from simulation, “sim”, to experimentally 

measured shear , “exp” (from Schuh and Ewoldt [1]). (A) Comparison of sign and magnitude of 

torque M for flat plate and β=21.7° at h0=269 μm. (B) Comparison of magnitude of torque for all 

textures at all gap heights tested, including textures outside the applicability region of the Reynolds 

equation. (C) Comparison of apparent viscosity for all textures tested at all gap heights, including 

textures outside the applicability region of the Reynolds equation. The standard deviation 

(Equation (40)) is σ=3.17% around the systematic error of εsys=-0.117% when using all 

experimental data points. 

 

 

 

 

 

5.2.1 Torque Comparison 
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 Figure 11 shows the comparison between the experimentally measured torque (and 

apparent viscosity) with the highly refined mineral oil S600 [1, 3] and the apparent viscosity 

obtained from simulations. (Results from the simulations for torque as a function of different β 

and Ω are given in Figure S11 in the Supplemental Information). No fit parameters are used. Also 

shown is a line where the apparent viscosity obtained with the Reynolds equation equals the 

experimental apparent viscosity. Figure 11A compares the sign and magnitude of the torque for 

the flat plate and β=21.7°. Figure 11B compares the magnitude of the torque for all surface textured 

tested, and includes data outside the applicability region of the Reynolds equation. Systematic 

error, calculated as 

 
exp, sim,

1 sim,

1 N
i i

sys

i iN

 





    (39) 

is 0.117%sys    when using data from all the surface textures tested. The standard deviation σ 

between the simulations and the experiments around the systematic error is given as a percentage 

and is calculated as  
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When using all the surface textures, 3.17%  . Figure 11C compares the apparent viscosity 

between the experiments and the simulations for all the textures tested.  

Systematic error can also be calculated only using those textures where the Reynolds 

equation applies, giving 1.15%sys   , and the standard deviation around the systematic error is 

2.35%  .  
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Figure 12: Comparison of the normal forces from simulation, “sim” to those measured 

experimentally measured, “exp” (Schuh and Ewoldt [1]). (A) Magnitude and sign comparison for 

β=5.3° and β=21.7° at h0=269 μm. (B) Magnitude comparison for all textures tested. (C) 

Magnitude and sign comparison for all textures, including those outside the range of applicability. 
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The standard deviation (Equation (42)) σ+=20.4% around the systematic error of εsys=-39.9% when 

sliding in the direction of the filled symbols and σ-=13.5% around the systematic error of εsys=-

17.5% when sliding in the direction of the open symbols when using all the textures and when 

using only those within the region of applicability. 

 

 

 

5.2.2 Normal Force Comparison 

 Figure 12 shows the comparison between the experimentally measured normal force and 

the simulated normal force. (Results from the simulations for normal force as a function of 

different β and Ω are given in Figure S12 in the supplemental information). Also shown is the line 

where the simulated normal force would equal the experimentally measured normal force. Figure 

12A compares the magnitude and the sign of the normal force for β=5.3° and β=21.7° at h0=269 

μm. The simulations produce the correct sign that is observed in the experiments, in contrast to the 

simple 1-D Cartesian models (Figure 2).  

Systematic error, calculated as  
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is 
, 39.9%sys     when sliding in the direction of the filled symbols (positive normal force) and 

, 17.5%sys     when sliding in the direction of the open symbols (negative normal force), both of 

which are higher than the systematic error in the torque.  

The systematic error in the normal force is most likely due to the neglecting of zz  and 

changes in p as a function of z that were neglected in deriving the Reynolds equation, as well as 

neglecting changes in viscosity that could also lower the magnitude of the pressure, and thus lower 
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the magnitude of the normal force. There could also be a systematic error in the experiments; the 

simulations predict odd symmetry when the direction of motion is flipped, which is not seen in the 

experiments. This could be due to an error in the inertial correction for the experiments; the same 

inertial correction for parallel flat plates was used for the surface textures, which could introduce 

a systematic error in the experiments that depends on direction of rotation.   

The standard deviation σ between the experiments and the simulations around the 

systematic error is again given as a percentage and is calculated as  
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and only the normal force values that are above the experimental measurement limit are used. The 

deviation about the systematic error is found to be 20.4%    for positive normal force and 

13.5%    for negative normal force. Figure 12B shows the comparison of just the magnitude 

of the normal force. Figure 12C shows the comparison of the magnitude and sign of the normal 

forces for all the textures tested, including those where the Reynolds equation is not valid.  

The systematic error and the standard deviation can also be calculated using only those 

textures where the Reynolds equation applies. Again, the standard deviation about the systematic 

error is found to be 20.4%    for positive normal force and 13.5%    for negative normal 

force. These results are the same because the normal force values for the textures outside the 

applicability range of the Reynolds equation are all below the experimental resolution limit.   

 

5.2.3 Rationale for Sign of Normal Force   
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We wish to understand the difference between the sign of the normal force from the 1-D 

theories and 2-D simulations. We start by examining the pressure gradient in 1-D, which can be 

understood by using conservation of mass coupled with the concept that the velocity field is a 

linear combination of boundary-driven (Couette) and pressure-driven (Poiseuille) flow. In 1-D, the 

volumetric flow rate everywhere inside the texture must be a constant  

 Constantdrag pressureQ Q Q     (43) 

where the drag flow term appears as average velocity times the gap height,  

 ( )
2

drag

U
Q h x   (44) 

and the pressure driven flow term depends cubically on the local gap height  
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Q h x

dx
    (45) 

For a changing gap height h(x), the drag flow term Qdrag will change. For example, an 

increasing gap in the direction of the flow, i.e. 0
dh

dx
 , increases Qdrag. To keep the total flow rate 

constant, Qpressure must also change. For example, an increasing gap height 0
dh

dx
  that causes an 

increase in Qdrag requires a decrease in Qpressure. This decrease in Qpressure could be either a smaller 

positive flow rate or a more negative flow rate, depending on the sign of 
dp

dx
. The resulting local 

pressure gradient 
dp

dx
 changes to perfectly accommodate Q=Constant. The change in the pressure 

gradient as the gap height changes can be found by differentiating Equation (43).  

Differentiating Equation (43), and writing in terms of the pressure gradient, we have 
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When h is known, Equation (46) is a 1st order linear, non-constant coefficient, non-homogeneous 

ordinary differential equation for the pressure gradient 
dp

dx
.  

 The concavity of the pressure can be determined by examining Equation (46). In the 

Reynolds equation, we assume that h<<1, meaning the 1/h3 term typically dominates the 1/h term. 

In such a case, the sign of the concavity of the pressure field is determined by the sign of 
dh

dx
. 

When  0
dh

dx
  (slow expansion) the pressure has positive concavity, and when 0

dh

dx
  (slow 

contraction) the pressure has negative concavity.  

Enforcing the boundary conditions, in 1-D at x=0 and x=L, will set the sign of the pressure. 

In the slow expansion motion (see Figure 2B) the pressure has positive concavity and with 

( 0) ( ) 0p x p x L     [42, 43], the pressure must be negative everywhere, resulting in a net 

negative normal force. This is akin to a typical thrust bearing operating in the wrong direction. We 

observe in experiment and (2-D) simulation that this same direction of motion (slow expansion) 

causes a positive net normal force with our textured surface. What changes in 2-D? 

 In 2-D, the general rationale for the concavity of the pressure field is similar to 1-D, 

although conservation of mass is less strict in the θ direction, because there can also be flow in the 

r direction. More importantly, the pressure is also not restricted to be zero at θ=-φ/2 and θ=φ/2.  

As seen in Figure 13, the general trend of the pressure profile is the same between the 1-D 

and 2-D cases, where the pressure has a positive concavity in the direction of slow expansion and 

a negative concavity in the direction of slow contraction. The concavity alone cannot predict a net 
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positive or negative pressure; the boundary conditions will determine the upward/downward shift 

of the concave pressure profile. Figure 13 shows the average pressure for the different sliding 

directions and boundary conditions at the outer edge where  
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for the 1-D case and  
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for the 2-D case.  

The average pressure is much closer to zero in the 2-D case. This can be understood by 

considering that the edge boundary condition on pressure is either zero everywhere, or its average 

is zero. When the boundary condition at the outer edge is changed, the sign of the average pressure 

also changes, and the sign of the average pressure correlates to the sign of the normal force.  

 In the 1-D case, the sign of the normal force is set by where the pressure is equal to zero. 

This matches results given by Dobrica and Fillon [23] who showed that in 1-D the sign of the 

normal force can be changed by changing the location of zero pressure. In 2-D, the sign of the 

normal force is set by the boundary condition at the outer edge, which has no analog in 1-D. The 

average pressure is closer to zero, and the direction of shift to net positive or net negative, due to 

the different boundary conditions, is difficult to predict. Therefore, we should expect the pressure 

gradient between 1-D and 2-D to have similar trends, but the sign of the normal force may not be 

the same, due to changing the location of where the pressure equals zero.   
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Figure 13: Pressure concavity and sign of net normal force in two different directions of motion: 

(A) slow expansion, (B) slow contraction. Comparison between standard 1-D slider bearing theory 

(green) and a 2-D periodic pie slice wedge (red and blue) (same geometry as used in Figure 6B). 

Pressure profile for 2-D case is from a specific radius (r=14.25 mm).  The pressure concavity (sign 

of second derivative) is the same for all cases (dependent on direction of motion only), but the 

average pressure (dashed lines) depend on the geometry and boundary conditions. The 2-D wedge 

with Neumann pressure condition at the outer boundary has opposite sign to the standard slider 

bearing theory, consistent with Figure 6B.  

 

 

6 Optimal β for Asymmetric Textures 
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The previous sections have verified our modeling and numerical simulation and also 

rationalized the sign of the experimentally observed normal forces. The experiments of Schuh and 

Ewoldt [1] suggested an optimal asymmetry angle β. We can now use our computations to 

determine the optimal β angle for decreasing friction with these asymmetric surface textures. The 

optimal condition minimizes the effective friction coefficient (Equation (13)). In this analysis, only 

β varies at different gap heights h0; all other geometric and flow variables were held constant.  

 Figure 14 shows 
*  as a function of β for both the experiments and the simulations at all 

the gap heights tested with rotational speed Ω=10 rad/s (this speed is chosen to be high enough for 

the normal force to be above the experimental force measurement limits, but low enough to avoid 

viscous heating). (Results from the simulations for 
* as a function of different β and Ω are given 

in Figure S13 in the supplemental information.) Error bars are shown for the experimental values 

using propagation of error in the normal force and torque measurement as  
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Substituting Equation (13) into Equation (49) and simplifying gives  
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Agreement is seen between the experiments and the simulations in the region where the Reynolds 

equation is valid. However, the computed values are always below the experimental values; this 

is because the simulations have a larger normal force with larger deviation than the torque, and the 

normal force is in the denominator. The optimal β is dependent on the nominal gap height, 
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suggesting that there is an optimal 0 /h D  ratio, similar to that predicted by slider bearing theory 

[7]. 

 

Figure 14: Effective friction coefficient μ* taken at Ω=10 rad/s (lines are predictions, symbols from 

experiments of Schuh and Ewoldt [1]). The error bars come from propagation of error for the 

experimental torque and normal force data (Equation (13)); dashed lines indicate predictions 

outside the applicability range of the Reynolds equation. The optimal texture angle is the minimum 

of the effective friction coefficient curve, which is dependent on the gap height. Good agreement 

is seen between the experiments and the simulations where the Reynolds equation is valid. 

 

7 Conclusions 
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We have developed a computational method for solving the Reynolds equation in 

cylindrical coordinates using the pseudo-spectral method. We showed that the expected 

exponential decay in the error is observed when compared to an analytic solution, validating the 

numerical method. We also showed good agreement between the simulations and experimental 

data for a flat plate, a symmetric texture, and four asymmetric surface textures at multiple gap 

heights, and that the deviations between the simulations and experimental data are due to 

experimental imperfections (asymmetry in bi-directional sliding) and neglecting terms in order to 

be consistent with the Reynolds equation analysis. Finally, we found that an optimal β exists, 

dependent on the gap height but not velocity, suggesting an optimal 0 /h D  for decreasing friction 

with asymmetric surface textures.  

This validated numerical method serves as a basis for future work on the inverse problem 

of designing the optimal surface texture profile for decreasing friction in thrust bearings. The 

optimization studied here was very limited in nature; only one geometrical parameter was changed. 

However, this numerical method was derived for an arbitrary topography ( , )h h r  ; therefore, 

this method can be coupled with other optimization tools to determine the best surface texture 

profile for decreasing friction in thrust bearings with Newtonian fluids. We are already pursing 

this optimization effort [2]. 
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Governing Equation 

The Reynolds equation in cylindrical coordinates is derived from mass conservation for an 

incompressible fluid and the Navier-Stokes (conservation of momentum) equations in cylindrical 

coordinates [1], given as  
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where ρ is the fluid density, p is the pressure, η is the fluid viscosity,  , ,rv r z  is the r velocity 

component,  , ,v r z   is the θ velocity component,  , ,zv r z is the z velocity component, and 

D

Dt
 is the material derivative, which in cylindrical coordinates is 
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 Equation (2) can be simplified by making the following assumptions: 

1) Inertial terms are negligible 

2) 0 / 0h R   where 0h  is the reference gap height and R is the reference radius 

3) The pressure is invariant in the z direction 

4) The fluid is an isoviscous Newtonian fluid 

The simplified Navier-Stokes equations then become a balance of pressure and viscous forces 

given by 
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and the conservation of mass equation is the same as Equation (1). 

The velocity boundary conditions used are 
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where Ω is the prescribed angular velocity of the flat plate and  ,h r   is the gap height, which 

can be a function of both r and θ. 

 Solving Equation (4) through direct integration with respect to z and by applying the 

boundary conditions given in Equation (5) gives 
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It can be seen from Equation (6) that v  is a linear combination of both simple shear flow (Couette 

drag flow) and pressure driven flow (Poiseuille flow) and rv  involves only pressure driven flow. 

Substituting Equation (6) into the continuity equation (Equation (1)), integrating in the z direction 

to remove z dependence, and applying Liebnitz’s integration rule gives the Reynolds equation in 

cylindrical coordinates as 
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If the system is assumed to be in steady state, then the steady form of the Reynolds equation in 

cylindrical coordinates is 
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which is an elliptic, non-constant coefficient, second order partial differential equation for the 

pressure field p(r,θ). If the gap height  ,h r  is prescribed (and boundary conditions for the 

pressure in the r and θ directions are also prescribed) then Equation (8) can be solved explicitly 

for the pressure and used in Equation (6) to calculate the velocity field.  

 

Comparison of Numerical Methods 

Several numerical methods can be used to solve the steady Reynolds equation, Equation 

(8). We use the pseudo-spectral method because it guarantees that the pressure solution is 

continuous, differentiable, and integrable [2], which is important because we want to compare the 
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normal force (integral of pressure) and shear stress (from derivatives of velocity, and thus 

derivatives of pressure) from simulations to experiments.  

The most popular method for solving the Reynolds equation with surface textures has been 

the finite difference method (FDM) [3, 4, 5, 6, 7, 8, 9, 10, 11, 12]. The resulting matrices are sparse 

because the differences are defined with respect to the nearest nodal points. However, the solution 

method using FDM is not guaranteed to be continuous, differentiable, or integrable, since FDM 

only acts on the function at the specified grid points [2]. It can also be shown through a Taylor 

series expansion that the error ε between the true solution and the computed solution decays as  

 
1

~
aN

   (9) 

where N is the number of grid points in an equally spaced mesh and a is the convergence rate that 

depends on the type of FDM used; a=1 for Euler-Forward/Euler-Backward, a=2 for Central Finite 

Differences, and a>2 for higher order differencing schemes. Therefore, a large number of grid 

points may be needed to decrease the error between the true solution and the computed solution, 

resulting in a large computational cost.  

 The finite volume method (FVM) has also been used [12, 13], and the results can be better 

than those obtained by FDM since FVM is a conservative method (the efflux out from one control 

volume is the influx into the neighboring control volumes). The matrices produced using FVM are 

also sparse, since each control volume interacts only with its nearest neighbors [14]. However, the 

solution using FVM cannot be guaranteed to be continuous, differentiable, or integrable, since 

FVM only acts at discrete points (usually the centers of the control volumes). The error between 

the true solution and the computed solution also decays in the same way as that given in Equation 

(9), meaning a large number of control volumes is needed to decrease the error, resulting in a large 

computational cost. 
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 One method to avoid the problems associated with FDM and FVM is to use the finite 

element method (FEM) [12, 15, 16]. The resulting solution is guaranteed to be continuous and 

integrable (though not differentiable), since FEM operates on coefficients of basis functions 

instead of discrete functional points [2, 17]. The resulting matrices are still sparse, since the basis 

functions are defined to be non-zero locally. The error between the true solution and the computed 

solution decays in the same way as Equation (9), where a=4 for piecewise linear finite elements. 

 A method that is guaranteed to be continuous, integrable, and differentiable is the 

spectral/pseudo-spectral method [12, 18, 19]. In this method, the basis functions are smooth, 

continuous functions that are defined over the entire domain [17, 20]. The error ε between the true 

solution and the computed solution decays as [21, 22, 23]  

 
1

~
Ne

   (10) 

where N is the number of grid points. It should be noted that the resulting matrices are no longer 

sparse, because the basis functions are defined over the entire domain. However, since the error 

between the true solution and the computed solution converges exponentially in space, a small 

number of grid points are needed to reduce the error, resulting in a small computational cost. 

Therefore, since the computational cost is small, and the solution is continuous, differentiable, and 

integrable, we use the pseudo-spectral method.  

 

Formulation and Solution Procedure 

We write our own code for using the pseudo-spectral method to solve Equation (8) for the 

pressure so that it can be coupled to optimization tools (for optimization studies outside the scope 

of the work presented here [24]). The pseudo-spectral method solves the governing partial 
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differential equation using a weighted residual technique (WRT) that computes an approximate 

solution to the differential equation [2, 17, 20]. 

 We apply the WRT to Equation (8) by multiplying by a test function w and integrating over 

the computational domain (Figure 3) which yields the weak form of the Reynolds Equation  
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where φ is the span in the θ direction and 2 / texN   where Ntex is the number of periodic “pie” 

slices and Ri and Ro are the inner and outer radii respectively. This can be simplified using 

integration by parts to reduce the degree of differentiability on the left hand side [2, 17, 20] and 

using appropriate boundary conditions given in the main body of the text to obtain 
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 The integrals in Equation (12) will be solved numerically. We use Gauss-Lobatto-

Legendre quadrature to evaluate the integrals. In this quadrature rule, the quadrature evaluations 

occur over a domain [-1, 1]. The interior discretized points are located at the zeros of the derivative 

of the Nth order Legendre polynomial [25], resulting in N+1 total mesh points. The quadrature 

weights are optimally chosen so that the quadrature is exact for polynomials of degree 2N-1 [2]. 

Since our quadrature evaluation points occur over the domain [-1,1], a change of variables must 

be performed to evaluate the integrals. The new variables, with domain [-1,1] are given as  
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Using Equation (13) to change variables in Equation (12) gives 
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 Finally, the pseudo-spectral method assumes that the functions w and p can be written as 

linear combinations of basis functions. If the Galerkin method is used, then the basis functions for 

w and p are the same [2, 17, 20] and w and p can be written as 
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where ρ is the basis function in one dimension and 
ijw  and lmp  are the coefficients of the basis 

functions. As basis functions, we chose Nth order Lagrange polynomials  
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where xi and xj are the grid point locations, i.e. the Gauss-Lobatto-Legendre points. Example basis 

functions are given in Figure S1. We selected these basis functions because  i j ijx  , where 

ij  is the Kronecker delta, which simplifies the numerical evaluation of the integrals in Equation 

(14), and also means that the coefficients lmp  correspond to the pressure evaluated at the grid 

points. 
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Figure S1: Example N=12 order Lagrange polynomial basis functions for i=2 and i=9 (Equation 

(16)). We use N=65 order in the pseudo-spectral method to solve the Reynolds equation.  

 

 Substituting Equation (15) into Equation (14) gives 
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It can be seen that Equation (17) can be written in matrix form as 

 
T Tw Kp w f   (18) 
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which is a linear system of equations where w  and p  are the vectors containing the coefficients, 

K is a matrix defined as 
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and f  is a vector defined as  
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It should be noted that K is a symmetric matrix and depends only on the 1st derivatives of the basis 

functions [2]; this is a direct result of using the integration by parts in Equation (12). We also 

assumed that the gap (texture) topography h could also be written as  
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where abh  is the gap height evaluated at the grid points.  

Using the Gauss-Lobatto-Legendre quadrature rule for evaluating the integrals defining K 

and f  yields K and f  in matrix form as [26] 
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where M is a diagonal matrix containing the quadrature weights, D is a full matrix such that 
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
 [25],  R is a diagonal matrix containing the values of r from Ri to Ro, H is a diagonal 
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matrix containing the values of h at the grid points, I is the identity matrix,  h  is a vector 

containing the gap height evaluated at the quadrature points, and   specifies the Kronecker tensor 

product allowing matrices in 1-D to be extended to higher space dimensions [26].  

The above analysis is true for every grid point in the computational domain, resulting in a 

system of 
2( 1)N   equations that need to be solved. We can reduce the number of equations by 

imposing the boundary conditions using [27, 28] 

 
w Bw

p Bp




  (24) 

where w  and p  are the vectors containing the coefficients at the interior nodes and the matrix  

,B B B    where B
 defines the boundary conditions in the ψ direction and B

 defines the 

boundary conditions in the ξ direction. Examples of B
 and B

 are given in subsequent sections 

because the exact structure of the matrices are problem specific. Substituting Equation (24) into 

Equation (18) gives  

 
T T T Tw B KBp w B f     (25) 

which can be rewritten as  

 
T Tw K p w f       (26) 

where 

 
.

T

T

K B KB

f B f

 

 
  (27) 

For non-trivial solutions, Equation (26) can be rewritten as find p  such that  

 K p f     (28) 
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which eliminates the need to solve for the test function w. Since K   and f   are already known 

from Equations (22), (23), and (27) for a given ( , ),h r   Ω, and boundary conditions, Equation (28) 

can be inverted to obtain p  directly. The full solution p  that satisfies the boundary conditions 

can then be obtained from Equation (24).  

 The full pressure solution will be used to calculate the normal force of the flat plate 

through an integration of the pressure over the area, calculated as  

 
2

0

,
o

i

R

N

R

F prdrd



     (29) 

and it can be seen that since inertial effects are negligible, normal force is proportional to viscosity 

and rotation speed 

 ~ .NF    (30) 

Derivatives of pressure are used to determine the velocity field through Equation (6), and 

derivatives of velocity components determine the shear stress on the top plate 

 0 0

1
| | .z

z z z

vv

r z


 


 

 
  

  
  (31) 

 This is integrated to calculate the total shear load in terms of torque  

  
2

0

0

| ,
o

i

R

z z

R

M r rdrd



      (32) 

and it can again be seen that the load scales linearly with viscosity and rotation speed 

 ~ .M    (33) 

Using the torque and the normal force, we define an effective friction coefficient µ*, similar to 

previous work [29], as  
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* /

N

M R

F
    (34) 

which is independent of the fluid viscosity or speed of rotation and only depends on the texture 

gap height profile.  

 

Comparison to Analytic Solution 

To verify the solution method outlined in the previous section, the numerical solution is 

compared to an analytic solution of the Reynolds equation in cylindrical coordinates. The analytic 

solution is obtained in the limit that 1,o iR R   causing the pressure to not vary in the r direction, 

and that  h h   only, which will be specified. These assumptions allow Equation (8) to be 

rewritten as  

 
31

6 .
d h dp dh

r d r d d


  

 
  

 
  (35) 

We choose to specify the gap height as a linearly varying function  

 1 0 1 0

2

h h h h
h 



 
    (36) 

where φ is the total span in the θ direction,   1/ 2 ,h h    and   0/ 2h h    . This gap 

height profile was selected because it is smooth and it allows an analytical solution to the Reynolds 

equation. We choose the boundary conditions 

    / 2 / 2 0.p p          (37) 

Solving Equation (35) for the pressure as a function of h with the given boundary conditions and 

h profile gives 
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  
   

2

0 1 1

2

1 0 0 1 0 0 1

6 1 1
1

h h hr
p h

h h h h h h h h h

    
           

  (38) 

which can be solved for p(θ) by substituting in Equation (36). The r term in Equation (38) can be 

treated as a constant, because 1.r   Moreover, the approximately constant value of r sets the 

velocity V=rΩ and the distance L=rφ in the flow direction, thus the term in the numerator 

2r VL  . The normal force acting on the flat plate is obtained by integrating in both the θ and 

r directions: 

/2

/2

o

i

R

true

R

F prdrd








   , which upon integration gives  

 
 

 

4

2

2

2

1

1
3 1

ln 2
2 11

i

o
o

true o

R

RR
F R

h

 
 



  
                 

    
  (39) 

where 
1

oh

h
  . The true normal force is the metric to which the numerical simulations are 

compared.   

 The numerical solution is obtained by solving Equation (28) with appropriate boundary 

conditions. The applied boundary conditions are  

    / 2 / 2 0,       | | 0
i or R r R

p p
p p

r r
     

 
      

 
  (40) 

which are implemented numerically through B
 and B

 as  

 

0 0 ... 0

1 0 ... 0

| | | |

0 0 ... 1

0 0 0 0

.

B

B I





 
 
 
 
 
 
  



  (41) 
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The boundary condition in the r direction must be specified because numerically we are using the 

original 2-D form of the steady state Reynolds equation given in Equation (8) and not the 

simplified 1-D form given in Equation (35). The normal force on the flat plate in obtained using 

Gauss-Lobatto-Legendre quadrature on the computed pressure by 

/2

/2

,
o

i

R

comp comp

R

F p rdrd








    where 

compp  is the computed pressure. The error between the computed normal force and the true normal 

force is calculated as  

 
| |

.
| |

true comp

true

F F

F



   (42) 

The expected exponential decay in the error is observed [21, 22, 23], validating the numerical 

method. To verify the predictive capabilities, we compare to experiments with textured disks.  

 

Textured Disk Modeling 

In our previously measured experimental results for a surface textured thrust bearing [29], 

the surface textures are cylindrical holes cut at an angle β, which creates an elliptical top profile. 

We model our surface textures with an elliptical top profile, similar to the experiments. Figure 3 

shows the geometric quantities used to define the surface textures; the finite inner radius is needed 

so that the 1/r terms in Equation (19) do not diverge. Figure S2 shows the convergence of the 

normal force as the inner radius becomes smaller, and is shown to converge when Ri<0.02 mm 

(Ri/Ro<0.1%). The geometric values for all the simulated textures are given in Table 1. Examples 

of the simulated texture surfaces are given in Figure 5.   
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Figure S2: Convergence of the normal force as a function of Ri. The normal force has converged 

to within 0.025% when Ri< 0.02 mm. 

 

Results for Textured Disks 

Pressure and velocity fields were obtained for all the different surface textures tested. 

Figure S3 is velocity and pressure fields obtained for the flat plate. Figures S4-S6 are velocity and 

pressure fields obtain with asymmetric textures with β=9.4°, 14°, and 21.7° respectively. Figure 

S7 is velocity and pressure fields obtained with the symmetric surface texture. The flat plate and 

β=9.4° and 14° all fall within the regions of applicability given in Figure 7, while β=21.7° and the 

symmetric texture are outside the applicability region.  
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Figure S3: Example computed fields obtained with the Reynolds equation for a flat plate with 

Ω=10 rad/s at h0=269 μm, which fall within the regions of applicability given in Figure 7. These 

computed fields were obtained for each texture tested with input values given in Table 2. (A) 

surface texture profile, plotted as -h. (B) plot of the velocity field at z=h0/2. (C) velocity field of vr 

and vz at θ=0°. (D) velocity field of vθ and vz at r=Rt. (E) computed pressure profile. (F) contour of 

pressure. 
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Figure S4: Example computed fields obtained with the Reynolds equation for an asymmetric 

surface texture with β=9.4° and Ω=10 rad/s at h0=269 μm, which fall within the regions of 

applicability given in Figure 7. These computed fields were obtained for each texture tested with 

input values given in Table 2. (A) surface texture profile, plotted as -h. (B) plot of the velocity 

field at z=h0/2. (C) velocity field of vr and vz at θ=0°. (D) velocity field of vθ and vz at r=Rt. (E) 

computed pressure profile. (F) contour of pressure. 
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Figure S5: Example computed fields obtained with the Reynolds equation for an asymmetric 

surface texture with β=14° and Ω=10 rad/s at h0=269 μm, which fall within the regions of 

applicability given in Figure 7. These computed fields were obtained for each texture tested with 

input values given in Table 2. (A) surface texture profile, plotted as -h. (B) plot of the velocity 

field at z=h0/2. (C) velocity field of vr and vz at θ=0°. (D) velocity field of vθ and vz at r=Rt. (E) 

computed pressure profile. (F) contour of pressure. 
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Figure S6: Example computed fields obtained with the Reynolds equation for an asymmetric 

surface texture with β=21.7° and Ω=10 rad/s at h0=269 μm, which fall outside the regions of 

applicability given in Figure 7. These computed fields were obtained for each texture tested with 

input values given in Table 2. (A) surface texture profile, plotted as -h. (B) plot of the velocity 

field at z=h0/2. (C) velocity field of vr and vz at θ=0°. (D) velocity field of vθ and vz at r=Rt. (E) 

computed pressure profile. (F) contour of pressure. 
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Figure S7: Example computed fields obtained with the Reynolds equation for a symmetric surface 

texture with D=2 mm and Ω=10 rad/s at h0=269 μm, which fall outside the regions of applicability 

given in Figure 7. These computed fields were obtained for each texture tested with input values 

given in Table 2. (A) surface texture profile, plotted as -h. (B) plot of the velocity field at z=h0/2. 

(C) velocity field of vr and vz at θ=0°. (D) velocity field of vθ and vz at r=Rt. (E) computed pressure 

profile. (F) contour of pressure. 

 

 

 Figure S8 shows the fully textured disk with β=5.3°, similar to those tested experimentally. 

Figure S9 shows the pressure profile for the fully textured disk with β=5.3°; the maximum value 

of the pressure is seen at the texture locations, and the pressure is periodic. Figure S10 shows the 
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shear stress at the moving surface for a fully textured disk with β=5.3°; the shear stress inside the 

textured region is lower than in the surrounding non-textured region, resulting in an effectively 

smaller sliding force on the moving surface.  

 

 
Figure S8: Fully textured disk profile with asymmetric angle β=5.3°. The textured surface is 

periodic, and matches experimentally tested disks.  
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Figure S9: Pressure profile for fully textured surface with asymmetric angle β=5.3°. The pressure 

profile is periodic, and the maximum value of the pressure occurs at the location of the surface 

textures.  
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Figure S10: Shear stress profile for fully textured surface with asymmetric angle β=5.3° at the 

moving flat surface. The shear stress profile is periodic, and the shear stress is lowered inside the 

textured region (compared to that of a flat disk), effectively decreasing the sliding force on the 

moving plate.  

 

 Figure S11 shows the numerical torque obtained as a function of angular velocity Ω for 

different angles of asymmetry β at a given gap height h0=269 μm. A monotonic trend is seen that 

when β is increased, the torque for a given Ω decreases, and the smallest torque value occurs at the 

largest β.  
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Figure S11: Numerical torque values obtain from simulations at different angular velocities Ω for 

different angles of asymmetry β. The results show a monotonic trend that increasing β decreases 

the torque measured at a given Ω.  

 

 Figure S12 shows numerical normal force values obtained as a function of angular velocity 

Ω for different angles of asymmetry β at a given gap height h0=269 μm. A non-monotonic trend is 

observed where increasing β from 0° to 5.3° causes an increase in the normal force for a given Ω, 

but when β increases beyond 5.3°, the normal force decreases for a given Ω.  
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Figure S12: Numerical normal force values obtain from simulations at different angular velocities 

Ω for different angles of asymmetry β. The results show a non-monotonic trend where increasing 

β increases the normal force at a given Ω between β=0° and β=5.3°, but for β>5.3° the normal 

force decreases as β increases.  

 

 Figure S13 shows numerical friction coefficient values obtained as a function of angular 

velocity Ω for different angles of asymmetry β at a given gap height h0=269 μm. A non-monotonic 

trend is observed where increasing β from 0° to 5.3° causes a decrease in the friction coefficient 

(independent of Ω), but when β increases beyond 5.3°, the friction coefficient increases 

(independent of Ω). The independence with respect to angular velocity occurs because both the 

torque and normal force depend linearly on Ω, which cancels out when taking the ratio use to 

define the friction coefficient.  
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Figure S13: Numerical friction coefficient (ratio of shear and normal load) obtained from 

simulations at different angular velocities Ω for different angles of asymmetry β. The results show 

a non-monotonic trend where increasing β decreases the friction coefficient (independent of Ω) 

between β=0° and β=5.3°, but after this point the friction coefficient increases as β increases 

(independent of Ω). The friction coefficient is independent of velocity since pressure and stresses 

all scale linearly with velocity for this low Reynolds number viscous flow (without cavitation).  

 

 

References 

 

[1]  K. E. Beschorner, C. F. Higgs III and M. R. Lovell, "Derivation of Reynolds equation in 

cylindrical coordinates applicable to pin-on-disk and cmp," in Proceedings of the 

STLE/ASME International Joint Tribology Conference, Miami, FL, USA, 2008.  

[2]  M. Heath, Scientific Computing: An Introductory Survey, 2nd Edition ed., McGraw-Hill, 

2002.  



27 

 

[3]  A. Ronen, I. Etsion and Y. Kligerman, "Friction-reducing surface-texturing in reciprocating 

automotive components," Tribology Transactions, vol. 44, no. 3, pp. 359-366, 2001.  

[4]  R. Siripuram and L. Stephens, "Effect of deterministic asperity geometry on hydrodynamic 

lubrication," Journal of Tribology, vol. 126, pp. 527-534, 2004.  

[5]  Y. Qiu and M. Khonsari, "On the prediction of cavitation in dimples using a mass-

conservative algorithm," Journal of Tribology, vol. 131, pp. 041702-1-11, 2009.  

[6]  S. Kango, D. Singh and R. Sharma, "Numerical investigation on the influence of surface 

texture on the performance of hydrodynamic journal bearing," Meccanica, vol. 47, pp. 469-

482, 2012.  

[7]  N. Tala-Ighil, P. Maspeyrot, M. Fillon and A. Bountif, "Effects of surface texture on journal-

bearing characteristics under steady-state operating conditions," Proceedings of the 

Institution of Mechanical Engineers, Part J: Journal of Engineering Tribolgoy, vol. 221, pp. 

623-633, 2007.  

[8]  L. Wang, W. Wang, H. Wang, T. Ma and Y. Hu, "Numerical analysis on the factors affecting 

the hydrodynamic performance for the parallel surfaces with microtextures," Journal of 

Tribology, vol. 136, pp. 021702-1-8, 2014.  

[9]  H. Yu, X. Wang and F. Zhou, "Geometric shape effects of surface texture on the generation 

of hydrodynamic pressure between conformal contacting surfaces," Tribology Letters, vol. 

37, pp. 123-130, 2010.  

[10]  Y. Feldman, Y. Kligerman, I. Etsion and S. Haber, "The validity of the Reynolds equation 

in modeling hydrostatic effects in gas lubricated textured parallel surfaces," Journal of 

Tribology, vol. 128, pp. 345-350, 2006.  

[11]  M. Qiu, B. Bailey, R. Stoll and B. Raeymaekers, "The accuracy of the compressible 

Reynolds equation for prediction the local pressure in gas-lubricated textured parallel slider 

bearing," Tribology International, vol. 72, pp. 83-89, 2014.  

[12]  T. Woloszynski, P. Podsiadlo and G. Stachowiak, "Evaluation of discretization and 

integration methods for the analysis of hydrodynamic bearings with and without surface 

texturing," Tribology Letters, vol. 51, pp. 25-47, 2013.  

[13]  M. Dobrica and M. Fillon, "About the validity of Reynolds equation and inertia effects in 

textured sliders of infinite width," Proceedings of the Institution of Mechanical Engineers, 

Part J: Journal of Engineering Tribology, vol. 223, pp. 69-78, 2009.  

[14]  J. Ferziger and M. Peric, Computational Methods for Fluid Dynamics, vol. 3, Springer, 2002.  

[15]  G. Jang, S. Lee and H. Kim, "Finite element analysis of the coupled journal and thrust bearing 

in a computer hard disk drive," Journal of Tribology, vol. 128, pp. 335-340, 2006.  

[16]  M. E. Wahl and F. E. Talke, "Numerical simulation of the steady state flying characteristics 

of a 50% slider with surface texture," IEEE Transactions on Magnetics, vol. 30, pp. 4122-

4124, 1994.  

[17]  G. Karniadakis and S. Sherwin, Spectral/hp Element Methods for Computational Fluid 

Dynamics, Oxford University Press, 2005.  

[18]  M. Schumack, "Application of the psuedospectral method to thermohydrodynamic 

lubrication," International Journal for Numerical Methods in Fluids, vol. 23, pp. 1145-1161, 

1996.  



28 

 

[19]  S. Gantasala, I. R. P. Krishna and A. S. Sekhar, "Dynamic analysis of rotors supported on 

journal bearings by solving Reynolds equation using pseudospectral method," in 

Proceedings of the 9th IFToMM International Conference on Rotor Dynamics, 2015.  

[20]  D. Kopriva, Implementing Spectral Methods for Partial Differential Equations, Springer, 

2009.  

[21]  M. Hussaini and T. Zang, "Spectral methods in fluid dynamics," Annual Review of Fluid 

Mechancis, vol. 19, pp. 339-367, 1987.  

[22]  B. Fornberg and D. Sloan, "A review of pseudo spectral methods for solving partial 

differential equations," Acta Numerica, vol. 3, pp. 203-267, 1994.  

[23]  J. Shen, "Efficient spectral-galerkin method I. Direct solvers of second- and fourth-order 

euqations using Legendre polynomials," SIAM Journal of Scientific Computing, vol. 15, pp. 

1489-1505, 1994.  

[24]  Y. Lee, J. Schuh, R. Ewoldt and J. Allison, "Shape parameterization comparison for full-film 

lubrication texture design," in ASME 2016 International Design Engineering Technical 

Conferences, to appear, Charlotte, NC, USA, 2016.  

[25]  B. Fornberg, A Practical Guide to Pseudospectral Methods, Cambridge: Cambridge 

University Press, 1998.  

[26]  M. Deville, P. Fischer and E. Mund, High-Order Methods for Incompressible Fluid Flow, 

Cambridge University Press, 2002.  

[27]  G. Strang, Computational Science and Engineering, Wellesley-Cambridge, 2007.  

[28]  L. Meirovitch, Fundamental of Vibrations, Waveland Press, Inc., 2010.  

[29]  J. Schuh and R. Ewoldt, "Asymmetric surface textures decrease friction with Newtonian 

fluids in full film lubricated sliding contact," Tribology International, vol. 97, pp. 490-498, 

2016.  

[30]  M. Qiu, B. Bailey, R. Stoll and B. Raeymakers, "The accuracy of the compressible Reynolds 

equation for prediction the local pressure in gas-lubricated textured parallel slider bearing," 

Tribology International, vol. 72, pp. 83-89, 2014.  

 

 
 

 

 

 


	Schuh 2017-PREPRINT Trib Lett - Re eqn validation and rationale for sign of F_N 2017-01-11
	Supplemental_INFO-2017-01-11a-JKS

