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Abstract Surface textures decrease friction in lubricated sliding with Newtonian
fluids. Viscoelastic non-Newtonian lubricants can enhance frictional performance,
but the optimal rheological material properties and their coupling to the texture
design are non-obvious. In this study, we present a simultaneous design of both sur-
face texture shape and non-Newtonian properties, which can be achieved by fluid
additives that introduce viscoelasticity, shear-thinning, and normal stress differ-
ences. Two models with different fidelity and computational cost are used to model
laminar non-Newtonian fluid flow between a rotating flat plate and a textured disk.
At lower-fidelity we use the Criminale-Ericksen-Filbey (CEF) constitutive model
and a thin-film approximation for conservation of momentum (Reynolds equation).
At higher-fidelity we use a fully nonlinear constitutive model typically applicable
to polymer solutions (multi-mode Giesekus model) and the full 3-D momentum
equations. Fluid additive design is parameterized by two relaxation modes each
having a timescale, added viscosity, and a nonlinear anisotropic drag parameter. To
manage the computational complexity and constraints between design variables,
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we use our previously-developed multiobjective adaptive surrogate modeling-based
optimization (MO-ASMO) method. A new data-driven extension of MO-ASMO
is introduced that constructs general boundaries to prevent attempts to evaluate
designs that would lead to simulation failure. We demonstrate the efficiency of our
MO-ASMO method and provide insights into co-designing the lubricant and tex-
tured surface. The Pareto-optimal solutions include fluid designs with both high
and low viscoelastic additive loading. We rationalize this trade-off and discuss how
the optimal design targets can be physically realized.

1 Introduction

Surface textures decrease friction in lubricated sliding contact with Newtonian
fluids (Wakuda et al., 2003; Etsion, 2004; Johnston et al., 2015). In hydrodynamic
lubrication applications, surface texturing helps generate hydrodynamic pressure
to support loads (Hamilton et al., 1966; Lee et al., 2017b; Schuh et al., 2017),
provide reservoirs for lubricant (Wakuda et al., 2003; Hamilton et al., 1966; Pet-
tersson and Jacobson, 2003), decrease shear stress (Wakuda et al., 2003; Etsion,
2004; Johnston et al., 2015; Hamilton et al., 1966; Lee et al., 2017b; Schuh et al.,
2017; Pettersson and Jacobson, 2003; Gropper et al., 2016), and trap debris to
help prevent surface wear and damage (Suh et al., 1994; Varenberg et al., 2002).
We previously have shown that this friction reduction can be enhanced further
using more general surface topographies (Lee et al., 2017b); this recent work in
freeform texture design was motivated by earlier studies that showed favorable sur-
face shapes can enhance frictional characteristics (Yu et al., 2010). For the study
presented in Lee et al. (2017b), we developed surface parameterization techniques
for generating an arbitrary texture profile subject to local slope (manufacturabil-
ity) constraints. We modeled the flow of an incompressible Newtonian fluid over
the textured surfaces using the Reynolds equation (Schuh et al., 2017; Reynolds,
1886), and used this model to determine the optimal texture profile for minimizing
frictional loss (shear stress) and maximizing load capacity (normal force).

We have also studied friction reduction experimentally with surface textures
and viscoelastic non-Newtonian lubricants (Schuh, 2015; Schuh et al., 2015). Vis-
coelastic non-Newtonian lubricants can decrease shear stress due to shear thinning
(Batra and Mohan, 1978; Hirani et al., 2008) and increase the load capacity due
to normal stress differences (Xiaodi et al., 2009). Combing these additional fluid
properties with surface texturing results in greater friction reduction than when
either strategy is used independently (Schuh, 2015; Schuh et al., 2015). However,
optimization of these viscoelastic properties, or the combined optimization of both
fluid and surface texture, has not been considered previously.

Based on these observations, we extend our design study to include viscoelastic
non-Newtonian fluid effects in friction reduction. A key challenge is the paradigm of
how to “design” the non-Newtonian fluid behavior. There is no single mathematical
model to describe all possible non-Newtonian fluids in the nonlinear viscoelastic
regime (Ewoldt, 2014), although universal equations apply in some limited circum-
stances, such a very small deformations with linear viscoelastic design (Corman
et al., 2016). Nonlinear viscoelastic design is of interest here, and we consider two
different constitutive models with different fidelities, though both are parameter-
ized by the same fluid design parameters. Selecting the fluid design description
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is also non-trivial. Here, we focus on continuum-level descriptions that can be
applicable to a range of possible fluid additives, rather than material-specific pa-
rameters such as polymer molecular weight or colloid size, which would depend on
the specific material embodiment to achieve the desired rheology. Our results here
serve as targets that can be achieved by a wide range of material classes (resulting
in a rheological inverse problem (Nelson and Ewoldt, 2017)); however, we expect
polymer solutions to be the most likely formulation.

Table 1 Fluid models used for design in this study and corresponding solver governing equa-
tions.

Case no. Fluid model Governing equation Dimension

1 CEF model Reynolds equation 2D (r, θ)
2 Giesekus model Cauchy momentum equation 3D (r, θ, z)
0 Newtonian fluid Cauchy momentum equation 3D (r, θ, z)

We include viscoelastic effects through two different models: the Criminale-
Ericksen-Filbey (CEF) model, and a multi-mode Giesekus model. The flow fields
with both models are three dimensional; however, the CEF model is less compu-
tationally expensive because it can be used in the thin-film limit (Ashmore et al.,
2008) to derive a modified Reynolds equation (which we have done, see the Sup-
plementary Materials and Schuh (2018)) that includes viscoelastic effects, whereas
the multi-mode Giesekus model is used with the full 3-D Cauchy Momentum equa-
tions. Combinations of the fluid models and governing equations are given in Table
1, and are discussed in more detail in Sect. 2.1 and 3.1. We compare the results
from the viscoelastic models to the Newtonian fluid reference case for the follow-
ing reasons: first, the simplest models for including viscoelasticity are based on
perturbations around the Newtonian fluid model (ordered fluid expansion (Bird
et al., 1987)), and second, we are interested in comparing the system performance
with viscoelasticity to the conventional Newtonian lubricants.

r−z
θ

M

FN

fixed,
textured
surface

gap controlled
rotating disc

(a) (b) (c) (d)

Fig. 1 A lubricated periodic surface texture design problem in a rotational tribo-rheometer
setting. (a) Schematic diagram, (b) Simulated periodic sector, (c) Sector design, (d) Full disc
design.

Figure 1 illustrates the design problem presented. We have adapted our previ-
ous design optimization strategy (Lee et al., 2017b; Schuh et al., 2017) to design
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both surface texture topography and non-Newtonian viscometric functions. Fig-
ure 1(a) shows the setup used previously in experiments (Schuh, 2015); the fluid
is confined between a flat plate that rotates at a constant angular velocity and a
stationary textured surface. A sector shown in Figs. 1(b)-(c) is an example design
of the surface texture height profiles as a function of r and θ. Figure 1(d) shows
an example of a fully-textured disc using ten periodic sectors.

As we extend our study to include nonlinear viscoelastic models, and move
from 2-D to 3-D, the computational cost associated with the design problem in-
creases significantly. In our previous study, where we modeled the fluid flow with
the (Newtonian) Reynolds equation, the computational cost of the optimization
was reduced by using a coarse design mesh that was mapped onto a finer anal-
ysis mesh (Lee et al., 2017b). The computational cost of the optimization can
also be reduced by linearizing the Reynolds equation (with respect to the design
variables) and iteratively solving using a sequential linear programming (SLP)
strategy (Lin et al., 2018) or by adaptively constructing computationally-efficient
surrogate models of expensive simulation responses (Wang and Shan, 2007). Here,
we solve the full nonlinear optimization problem using surrogate modeling. We
have developed a multi-objective adaptive surrogate modeling-based optimization
(MO-ASMO) strategy (Lee et al., 2017a) that uses efficient sampling techniques to
explore a constrained design space and search for Pareto-optimal solutions. This
algorithm is developed specifically for problems with narrow or geometrically-
complex feasible design domains. We have imposed a local slope constraint on the
gap height profile (manufacturability constraint), and have constrained the vis-
coelastic material functions using the analytical solution of the Giesekus model in
steady simple shear flow to represent realizable materials using a limited number
of fluid parameters. It is demonstrated that the MO-ASMO algorithm is benefi-
cial by reducing the overall computational cost of the combined fluid and texture
design optimization problem.

Our contributions in this study are summarized here.
– We demonstrate that simultaneous co-design of texture (structural shape)

and rheology (material properties) achieves better frictional system performance
than design employing only texture shape optimization (as done previously). Our
design is uniquely achieved by parameterizing the target viscometric functions,
such as viscosity and first normal stress difference.

– We propose two unique non-Newtonian fluid solvers specifically for design
applications involving surface texture shape design. We first suggest modeling the
viscoelastic behavior with the Criminale-Ericksen-Filbey (CEF) model, and use
this constitutive relationship to derive a modified form of the Reynolds equation
(CEF-Reynolds equation), which includes leading order viscoelasticity and inertia,
in cylindrical coordinates. The solution of the CEF-Reynolds equation is obtained
in nearly the same time as the tradition Reynolds equation, but the solution also
includes leading order viscoelastic and inertial effects that the Reynolds equation
does not. The fidelity of the model can be improved by using the full 3-D Cauchy
momentum equations in cylindrical coordinates, which we also use here, where
the additional polymeric shear stress is included by a multi-mode Giesekus model.
This representation also includes time-dependent fluid behavior (for example, re-
laxation) that is not included in the CEF-Reynolds equation. While this model
increases design fidelity, it comes at the cost at a longer simulation time. Both of
these models are discretized using the pseudo-spectral method, which has many
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advantages over other discretization techniques for simulation based optimization,
as explained in Sect. 3.1.3.

– The design representation allows for determining physically realizable mate-
rial functions, independent of material formulation. The CEF model is material-
independent, and the model parameters are the shear rate dependent viscosity
and normal stress differences, which can be parameterized in any arbitrary way.
Achieving these independent material properties with real materials requires the
use of material-specific constitutive models (such as the Giesekus model, which
applies for polymer solutions, polymer melts, worm-like micelles, etc.) where the
material properties are related through parameters that have physical meanings,
such as polymer relaxation time.

– Finally, we show that actively updated bounds that encapsulate infeasible
region using the support vector domain description (SVDD) method makes pos-
sible the avoidance of design space regions that lead to numerical instabilities
and simulation failure. SVDD accommodates very general boundaries, and this
strategy improves overall computational efficiency.

This paper is organized as follows. Section 2 presents the two non-Newtonian
fluid models and the design problem formulation. Section 3 introduces solution pro-
cedures for fluid flow and surrogate-based design optimization. Section 4 presents
the results and discusses the impact of using different fluid models on the design
problem results. Section 5 then summarizes the results and concludes with the
main findings from this study.

2 Formulation

We use models of two different fidelities, but both are governed by conservation of
mass, momentum, and a constitutive equation for the fluid stress τ . The different
fidelities result from different simplifying assumptions of these governing equations.
Conservation of mass (incompressible flow) and momentum are given by:

∇ · u = 0 (1a)

ρ

(
∂u

∂t
+ [u · ∇]u

)
= −∇p+∇ · τ , (1b)

where u is the velocity field, ρ is fluid density, p is the isotropic pressure, and τ
is the material stress. Fluid design parameters will appear in the material stress
through the constitutive model for τ .

We model this scenario at two different fidelities; one used the full 3-D conser-
vation of momentum for the flow field with a high fidelity non-linear viscoelastic
constitutive equation for the stress tensor. The thin film geometry and dynamic
conditions motivate a lower-fidelity model that neglects complexities in both the
governing momentum equation and the constitutive model. For this, we use a non-
Newtonian fluid model that captures the non-linear rheological behavior but only
weak viscoelasticity, and simplify the governing equations based on thin film (lu-
brication approximation) concepts that neglect certain spacial derivatives in Eq.
(1b). The governing constitutive equations for τ , which involve the fluid design
parameters, are described in the following subsections.
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2.1 Non-Newtonian Fluid Models

Non-Newtonian fluids show different rheological behavior than Newtonian fluids;
the behaviors most often studied are shear thinning, viscoelasticity, generation of
normal stresses in shear, and extensional thickening. These rheological behaviors
can be described using different constitutive models. The two models we use are
the Criminale-Ericksen-Filbey (CEF) model and the multi-mode Giesekus model.

We select these two models because of their ability to predict shear thin-
ning, normal stress generation, and viscoelasticity (more details given below). The
higher-fidelity Giesekus model is fully nonlinear and viscoelastic. It is derived in
the context of polymeric systems (often used for polymer solutions and polymer
melts), and is parameterized by 3k parameters, where k is the total number of
relaxation modes. We limit ourselves here to k = 2 determined by the Bayesian
Information Criterion (BIC), an approximation of the full Bayes factors (Schwarz,
1978). Readers are referred to Appendix A.3 in Schuh (2018) for the detailed pro-
cedure used to determine the parameter k. The CEF model is lower fidelity, but is
universally applicable to all non-Newtonian fluids in the limit of weak viscoelastic-
ity. Thus, it can support a larger design space for achieving a given fluid behavior.
The inputs to the CEF model are functions, which need to be parameterized; here,
we choose to parameterize the rheological material functions for the CEF model
using the steady shear material behavior for the Giesekus model, which allows
us to have the proper interrelations between the viscosity and normal stress dif-
ferences. Thus, both models have the same fluid design parameters consisting of
two relaxation modes each having a timescale, added viscosity, and a nonlinear
anisotropic drag parameter: (λk, ηk, αk).

2.1.1 Criminale-Ericksen-Filbey (CEF) Model

The Criminale-Ericksen-Filbey (CEF) model (Criminale et al., 1957; Bird et al.,
1987) is a constitutive model for the stress tensor τ that contains terms for the
shear-rate dependent viscosity and the first and second normal stress differences,
and is given as:

τ = η (γ̇) γ
(1)
− 1

2
Ψ1 (γ̇) γ

(2)
+ Ψ2 (γ̇)

(
γ
(1)
· γ

(1)

)
, (2)

where the upper convected time derivative (Oldroyd, 1950) of the shear rate γ̇ is
defined as:

γ̇ = γ
(1)

= ∇u+ (∇u)ᵀ , and (3a)

γ
(n+1)

=
∂γ

(n)

∂t
+ (u · ∇) γ

(n)
−
(
(∇u)ᵀ · γ

(n)
+ γ

(n)
· (∇u)

)
. (3b)

The model parameters are the functions η (·), Ψ1 (·), and Ψ2 (·), which are equiv-
alent to the viscometric functions in simple shear. For general flow fields, these
functions depend on the instantaneous shear rate magnitude γ̇ where γ̇ =

√
1
2 γ̇ : γ̇

(the operator ‘:’ denotes the inner product of tensors). The first term in Eq. (2)
models a generalized Newtonian fluid, and the remaining terms model the behavior
of elastic effects from normal stress differences.
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In steady, simple shear flow, where u = γ̇yî, the CEF model gives the shear
viscosity η, and the first and second normal stress difference coefficients Ψ1 and
Ψ2 as η = η (γ̇), Ψ1 = Ψ1 (γ̇), Ψ2 = Ψ2 (γ̇), meaning that the inputs to the CEF
model are the steady shear responses for a given fluid. It should be noted that for
most polymeric systems, Ψ2 (γ̇) < 0.

In small amplitude oscillatory shear, where u = γ0ω cos (ωt) yî, γ0 is the strain
amplitude, and ω is the angular frequency, the CEF model gives the dynamic
viscosity η′ and the storage modulus G′ as:

η′ = η (γ̇ = 0) (4a)

G′ =
1

2
Ψ1 (γ̇ = 0)ω2 (4b)

which is the same behavior as that predicited by the second order fluid (SOF)
model, which gives the first order deviation from Newtonian fluid behavior, and
is the same terminal regime (limit ω → 0) predicted by all fully non-linear fluid
models (including polymer systems) with a finite longest relaxation time.

The design inputs for this model are the rheological material functions η (γ̇),
Ψ1 (γ̇), and Ψ2 (γ̇). There are infinitely many ways of representing the material
functions; here, we choose to use the steady shear response from fully non-linear
models, which reduces the fluid design representation to the design inputs λk, ηpk ,
and αk, which are related to the steady state behavior of η (γ̇), Ψ1 (γ̇), and Ψ2 (γ̇)
for a multi-mode Giesekus model (Bird et al., 1987) as:

η = ηs +

nmode∑
k=1

ηpk
(1− fk)2

1 + (1− 2αk) fk
(5)

Ψ1 =

nmode∑
k=1

2ηpkλk
fk (1− αkfk)

(λkγ̇)
2 αk (1− fk)

(6)

Ψ2 =

nmode∑
k=1

ηpkλk

( −fk
(λkγ̇)

2

)
(7)

where

fk =
1− χk

1 + (1− 2αk)χk
(8a)

χ2
k =

√
1 + 16αk (1− αk) (λkγ̇)2 − 1

8αk(1− αk) (λkγ̇)2
. (8b)

We use this model because of the predicted normal stress generation which is
important in determining the thrust generation with polymer solutions. We limit
the parameters ηpk ∈

[
0, 52ηs

]
, λk ∈

[
10−5, 10−2

]
, and αk ∈ [0.01, 0.5]. The bounds

on ηpk are determined by fitting the Huggins equation (Huggins, 1942) to exper-
imental data of zero shear viscosity as a function of polymer concentration, and
noting the region where the Huggins equation is valid when compared to the ex-
perimental data. The bounds on λk are also determined from fitting the Giesekus
model to experimental data at varying concentrations of polyisobutylene (PIB)
(Schuh, 2018), which are also within the range of concentrations tested here. The
mobility factor αk is bounded between 0.01 and 0.5 to ensure realistic material
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properties (Atalık and Keunings, 2004). When αk is less than 0.01, large Weis-
senberg numbersWi = λγ̇ cause numerical instability, and numerical computation
tends to fail (Keunings, 2000). The total number of fluid design variables is 3k,
where k is the number of relaxation modes in the parameterization.

2.1.2 Multi-Mode Giesekus Model

The CEF model only captures viscoelasticity in the limit of low frequency, close
to steady state. To capture the higher-order viscoelastic effects, we must use a
higher fidelity model that captures the full range of a viscoelastic response. Here,
we choose a multi-mode Giesekus model to simulate our polymeric stresses (Bird
et al., 1987), given as:

λk

(
∂τ

pk

∂t
+ (u · ∇) τ

pk
−
[
(∇u)ᵀ · τ

pk
+ τ

pk
· (∇u)

])

+τ
pk

+
λkαk
ηpk

(
τ
pk
· τ
pk

)
= ηpk γ̇, (9)

where λk is the relaxation time, ηpk is the polymeric viscosity, and αk is the
mobility factor of the kth-mode which can be physically related to the anisotropic
drag of a polymer when deformed by the flow. Note that the entire first term
in parentheses on the left hand side is an upper convected time derivative of the
polymeric stress τ

pk
. The contributions from each mode are assumed to be additive

such that the total polymeric stress τ
p
is given as:

τ
p
=

nmode∑
k=1

τ
pk
. (10)

The steady shear viscosity and normal stress differences are the same as those
given in Eqs. (5)-(7). Here the linear (small amplitude) viscoelastic behavior (Bird
et al., 1987) is given as:

η′ = ηs +

nmode∑
i=1

ηpk
1 + (λkω)

2 (11a)

G′ =

nmode∑
i=1

ηpkλkω
2

1 + (λkω)
2 (11b)

which applies for all frequencies in the linear regime.
We again use this model because of the predicted normal stress generation,

which is important in determining the thrust generation with polymer solutions.
We limit the parameter ranges to ηpk ∈

[
0, 52ηs

]
, λk ∈

[
10−5, 10−2

]
, and αk ∈

[0.01, 0.5]. The total number of design variables is 3k, where k is the number of
relaxation modes in the parameterization.
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2.1.3 Parameters

Fluid properties, model parameters, computational mesh resolutions, operating
conditions, and design constraint parameters for Cases 0, 1, and 2 in Table 1 are
given in this section. The top and bottom discs (gap-controlled rotating disc and
fixed textured surface in Fig. 1(a)-(b)) have the same outer radius (ro) of 20 mm.
The minimum controlled gap height between top and bottom discs (h0) is 269 µm;
this value is used as the lower bound for the texture design gap height variable. The
number of periodic sectors needed to construct a full disc (Nφ) is 10. The number
of mesh nodes for each r-, θ-, and z-direction is nr = 6, nθ = 6, and nz = 4,
respectively. Note that nz does not apply to Case 1. The angular velocity of the
flat plate (Ω), as shown in Fig. 1(a), is 10 rad/s; solvent viscosity (ηs) and density
(ρs) values are 9.624× 10−3 Pa·s and 873.4 kg/m3. The number of modes for the
Giesekus fluid model is nmode = 2 for Cases 1 and 2. For Case 0, this variable
is not defined. The maximum angle for the texture inclination (θincl = 60◦) is
explained in Sect. 2.2.

2.2 Design Problem Formulation

The design problem considered here is the simultaneous minimization of the input
power to the rotating flat plate and maximization of the load-supporting normal
force, while constraining the maximum texture inclination angle. This problem is
formulated as a constrained nonlinear optimization problem:

minimize
xlb≤x≤xub

f (x) = [P, −FN ]T subject to: (12a)

g
1
(x) =

[∣∣∣∣hkj − h(k−1)j

rk − r(k−1)

∣∣∣∣ , ∣∣∣∣ hil − hi(l−1)

riθl − riθ(l−1)

∣∣∣∣]T

− θincl ≤ 0 (12b)
g
2
(x) = −hnr1 + hnrl ≤ 0 (12c)

h3 (x) = hi1 − hinθ = 0, (12d)
where:
P =MΩ (12e)

FN = Nφ

∫ ϕ/2

−ϕ/2

∫ Ro

Ri

(
p|z=0 − τzz|z=0

)
rdrdθ (12f)

M = Nφ

∫ ϕ/2

−ϕ/2

∫ Ro

Ri

(
rτθz|z=0

)
rdrdθ (12g)

pij , τ ij ← flow-solver (x) , (12h)

for all i = 1, · · · , nr, j = 1, · · · , nθ, k = 2, · · · , nr, and l = 2, · · · , nθ. The design
objectives are to minimize the power input P =MΩ and to maximize the normal
force FN simultaneously. Simultaneous optimization of the two objective functions
(multiobjective optimization) results in a set of Pareto-optimal (non-dominated)
solutions. A manufacturability constraint applied in our previous study (Lee et al.,
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2017b) is also implemented via the first vector-valued inequality constraint func-
tion g

1
. The maximum allowable local inclination angle between neighboring con-

trol points of the Lagrange polynomial interpolation over the texture geometry is
limited to a predefined constant vector θincl. In addition, it is possible to have an
infinite number of designs that are physically identical unless we set a reference
point that is lower than any other location with the same radius, since the spatial
design domain is rotationally periodic. To prevent this problem, we impose the
inequality constraint g

2
(x). Also, the periodic boundary condition in the spatial

design domain is specified using the constraint h3 (x).
The design variable vector x is comprised of both surface height values at

mesh nodes, hij , and fluid model parameters associated with each viscoelastic
relaxation mode, k, given as x = [hij , ηpk , λk, αk]

T for all i = 1, · · · , nr, j =
1, · · · , nθ, k = 1, · · · , nmode, and assuming we have a given fluid viscosity η, used
as η (γ̇1 ≈ 0) = η and ηs = η for the Giesekus model. The texture design is
represented by a curvilinear mesh fitted to the cylindrical coordinate system and
nodes spaced according to Gauss-Lobatto-Legendre (GLL) points (Fornberg, 2009)
for each r and θ direction. Gap heights hij are defined for each node of the mesh,
where i and j are indices of the nodes in r and θ directions. The texture design
defined by hij is interpolated using Lagrange polynomials; the resulting texture
surface used in this model is continuous and smooth. The viscoelastic material
functions for the CEF model are described using analytical solutions of the material
functions from the Giesekus model as described in Sect. 2.1.1. This representation
strategy reduces the number of design variables significantly, which allows the same
design variable set to be used for the two fluid models. Material functions used in
the non-Newtonian fluid models are constrained to disallow certain combinations of
values that are not numerically or physically realizable. This is implemented using
the support vector domain description (SVDD) technique (Malak and Paredis,
2010), and is discussed in Sect. 3.2.2.

3 Methodology

3.1 Solution Procedures for Fluid Flow

3.1.1 Lower-Fidelity Model: Thin-Film Reynolds Equation With CEF Fluid

Previously we have developed code for solving the flow of an incompressible Newto-
nian fluid over general surface textures using the Reynolds equation (Schuh et al.,
2017), and have used that code for optimization of textured surfaces (Lee et al.,
2017b). A previous study (Ashmore et al., 2008) showed that viscoelasticity can
be included in the thin film governing equations using the CEF model.

Here we derive a modified Reynolds equation with the CEF model for our
design problem. Full details are provided in the Supplementary Materials. Briefly,
we apply the following assumptions: i) the gap height is small compared to the
radius of the textured disk (h (r, θ) /R << 1), ii) shear rate (γ̇ (r, θ) = rΩ/h (r, θ))
is independent of z, iii) ∃ no second normal stress difference coefficient (Ψ2 = 0),
resulting in pressure that does not vary in the z direction (∂p/∂z = 0), and iv)
zero gradients in the z direction are assumed for the other viscometric functions
(∂η/∂z = 0, ∂Ψ1/∂z = 0). Splitting the pressure and velocity fields into p = p0+p1
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and u = u0 + u1, and applying appropriate boundary conditions for the velocity
fields results in two equations governing the flow of a CEF fluid over general surface
textures; an equation similar to the steady state Reynolds equation may be given
as:

1

r

∂

∂r

(
rh3

12η

∂p0
∂r

)
+

1

r

∂

∂θ

(
h3

12ηr
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)
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r

∂

∂θ

(
rΩh

2

)
, (13)

which includes shear thinning, and another equation (where the right hand side
depends on the local Reynolds number and the local relationship between elasticity
and viscosity) given as:
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(Gθ) , (14)

where Gr and Gθ are functions of r, h, η, Ψ1, ∂p0∂r , and
∂p0
∂θ . Detailed expressions

for each term, and the full derivation of the modified CEF-Reynolds equations are
given in Sect. 1 of the Supplementary Materials and in Schuh (2018).

3.1.2 Higher-Fidelity Model: Full 3-D Momentum Equation With Giesekus Fluid

For the Giesekus model, the full Cauchy momentum equation is written in tensorial
form as:

∂u

∂t
+ (u · ∇)u = −1

ρ
∇p+ ηs

ρ
∇2u+

1

ρ
∇ · τ

p
, (15)

where ρ is the fluid density, ηs is the solvent viscosity, and τ
p
is the polymeric

contribution to the shear stress. The contribution of the solvent has been pulled
out of the stress tensor to improve numerical stability (Owens and Phillips, 2002).
We assume that the solvent and polymeric stresses add to produce the total shear
stress:

τ = τ
s
+ τ

p
, τ

s
= ηsγ̇. (16)

The governing equations (conservation of momentum and incompressibility) pro-
vide four equations with ten unknowns; therefore, a constitutive equation must
be used for τ

p
to solve the fluid flow system. As stated above, we are using the

multi-mode Giesekus model given in Eq. (9) with nmode = 2.
We solve the transient governing equations in cylindrical coordinates to steady

state. The equations are solved on a periodic sector of a disk where z ∈ [−h(r, θ), 0];
this is similar to our previous solution method with the Reynolds equation (Schuh
et al., 2017; Lee et al., 2017b). The equations are discretized in space using a
Galerkin pseudospectral method. We have mapped our 3-D periodic sector onto the
[−1, 1] cube using an invertible mapping (Deville et al., 2002; Kopriva, 2009), where
it was assumed that the gradient of the gap height profile h (r, θ) exists everywhere
in the computational domain. We use GLL quadrature with optimally-chosen mesh
points and quadrature weights so that the quadrature is exact for approximating
polynomials of degree 2N − 1, where N + 1 is the number of discretization points
in a given direction (Heath, 2002; Fornberg, 2009). We use a third-order Adams
Bashforth method with third-order extrapolation for the nonlinear terms in the
time discretization. A velocity splitting technique is used for solving the pressure
Poisson equation at each time step, and the diffusion terms are treated implicitly
to aid stability (Owens and Phillips, 2002).
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The transient Cauchy momentum equations are solved with a maximum CFL
number of 0.8, where the local CFL condition is defined as C = u∆t/∆x. Each fluid
parameter is constrained based on physical or numerical limitations as explained
in Sect. 2.1.2.

3.1.3 Pseudospectral Method

We solve both governing equations presented in Sect. 3.1.1 and 3.1.2 using a
Galerkin pseudospectral method for a periodic sector with p0|r=R0

= p1|r=R0
= 0,

∂p0/∂r|r=Ri = ∂p1/∂r|r=Ri = 0, and periodic boundary conditions in the θ di-
rection. The Dirichlet boundary condition p|r=R0

= 0 is used to match results
described in Macosko (Macosko, 1994) for flow between parallel disks. We use
ND-th order Lagrange polynomials for approximating quantities for each geomet-
ric dimension D. The texture design provided to the flow simulation is represented
by the gap height hij for i, j = 1, · · · , nr, and the solution procedure associated
with the pseudospectral method assumes that the entire computational domain is
continuous and smooth in Lagrange polynomial form. Thus, this method obtains
a very accurate fluid flow solution, even for coarse spatial meshes. Solutions for
the design problem will also be smooth and continuous in the form of a Lagrange
polynomial. Also, by maintaining the same mesh for the design representation and
the simulation domain representation, we obtain very accurate design solutions
without requiring a large number of design variables due to the characteristics of
the interpolating polynomials used in the pseudospectral method. Increasing the
mesh density, however, may introduce new practical design complexities, such as
thinner texture features on the surface.

3.1.4 Experimental Validation of Numerical Models

The lower-fidelity model (thin-film Reynolds equation with CEF fluid) and the
higher-fidelity model (full 3-D momentum equation with Giesekus fluid) are val-
idated against steady shear experiments for varying concentrations of PIB in S6
base mineral oil using a cone-and-plate rheometer geometry of Θ=1.011◦ and
R=20 mm, where Θ and R denote the cone angle and the radius, respectively.
The comparison results show a good agreement between two models in a steady
condition and between numerical and experimental results. The detailed compar-
isons of the raw torque and the raw normal thrust between experimental data and
simulation results are provided in Sect. 3 of the Supplementary Materials.
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3.2 Design Procedures

3.2.1 Multiobjective Adaptive Surrogate Modeling-Based Optimization
(MO-ASMO)

Fig. 2 Flow chart illustrating the MO-ASMO framework with direct sampling method (Lee
et al., 2017a; Wang and Shan, 2007).

Efficient and effective sampling strategies for surrogate modeling-based optimiza-
tion (SMBO) are well-studied in the context of finding a single optimum by bal-
ancing exploration and exploitation objectives in constructing surrogate models
(Wang and Shan, 2007). However, studies of sampling strategies for multiobjective
optimization problems (MOPs) are largely limited to a global-level improvement
of surrogate model accuracy as opposed to more efficient targeted accuracy im-
provements (Wilson et al., 2001; Steponaviĉè et al., 2016). Shan and Wang (2004)
developed the Pareto set pursuing (PSP) methodology that generates new train-
ing points toward regions where the predicted Pareto set is located, resulting in
significant improvements in computational efficiency for solution of MOPs using
SMBO.

The multiobjective adaptive surrogate modeling-based optimization (MO-ASMO)
strategy used here (Lee et al., 2017a) is a surrogate-based optimization framework
that can manage multiple objective functions, tens or hundreds of design vari-
ables, and multiple linear and nonlinear constraints. Figure 2 illustrates a high-
level process description for this type of algorithm (direct sampling (Wang and
Shan, 2007)). We have developed this method primarily for solving problems with
complicated constraints that result in narrow or otherwise difficult to navigate fea-
sible domains. It avoids infeasible samples to reduce inefficient use of high-fidelity
simulations, especially designs that are not physically meaningful or that result
in numerical instability. The method aims to balance choosing samples that help
improve surrogate model accuracy in the vicinity of the Pareto-optimal solution
(a hypersurface in the design space), with choosing samples that aid exploration
to improve the probability of finding global optima. The problem considered here
is well-matched for this MO-ASMO method as it involves a large number of con-
straints that interrelate multiple design variables, and a computationally-expensive
simulation. Readers are referred to (Lee et al., 2017a) for a detailed description of
this method, including sampling and validation, as well as openly-available source
code.
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3.2.2 Feasibility Management Using Support Vector Domain Description (SVDD)

When using simulations that use design variables as inputs, it is possible that cer-
tain combinations of design variable values correspond to a physically meaningless
design that results in simulation failure. Some combinations that are physically
meaningful may also result in numerical instabilities and simulation failure. In
some cases it may be possible to prevent consideration of designs that cause simu-
lation failure via explicit algebraic constraints (Lee et al., 2017a). In other cases, it
may not be known what variable combinations may cause failure until attempting
simulation, preventing definition of constraints a priori. In these circumstances, an
alternative strategy is required.

In the studies presented here, it is not possible to define constraints a priori
that prevent simulation failure. Certain numerical instabilities arise for a range of
different designs. A strategy was developed to define arbitrary constraint bound-
aries (non-convex, disconnected infeasible domains) adaptively based on observed
failed simulations. This strategy is based on support vector domain description
(SVDD) (Tax and Duin, 1999; Malak and Paredis, 2010). In earlier work SVDD
was used to define complex feasible regions. Here SVDD is used in the opposite
manner to define regions of points that are infeasible in the sense that they lead
to simulation failure. Availability of these constraints helps to avoid wasteful con-
sideration of points that cannot be simulated.

At each MO-ASMO main iteration, the SVDD approximation of regions that
cannot be simulated is improved by adding newly discovered infeasible points to
the SVDD dataset. Using a strategy that defines the infeasible domain rather than
the feasible domain avoids excessive limitations on design space exploration, all
without a priori knowledge of the regions that cannot be simulated.

We constructed the Gaussian kernel-based SVDD (Tax and Duin, 1999) using
a maximization problem given as:

maximize
0≤β≤C

W
(
β
)
=
∑
i

βiKG (xi, xi)−
∑
i,j

βiβjKG
(
xi, xj

)
, (17)

where C is a vector of appropriate length where each element is the constant C.
The Lagrange multipliers β are bounded above by C. Varying C can help detect
the outliers in the dataset that describes the domain. KG (·, ·) is the Gaussian
kernel function. After we construct the domain using the SVDD, an arbitrary
point z is inside the described boundary if:

R2 (x)−R2 (z) =

KG (x, x)−KG (z, z) + 2
∑
i

βi (KG (z, xi)−KG (xi, xi)) ≥ 0, (18)

where x is a bounding point, which is called a support vector. A detailed expla-
nation of SVDD is provided in Sect. 2 of the supplementary materials.
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4 Results and Discussion

4.1 Case 1: Lower-fidelity model with CEF fluid

Solutions of design problem Case 1 (CEF model with Reynolds equation) are il-
lustrated in the objective function space in Fig. 3. Since the objective functions
are i) to minimize the power input and ii) to maximize the normal force, we desire
points in this space to be close to the top-left corner. We used the Gaussian process
surrogate modeling technique within the MO-ASMO framework for all numerical
optimization studies presented here. Among the several stopping conditions avail-
able, we selected an average error criterion (less than 1%) evaluated during the
validation stage in the MO-ASMO for terminating the optimization process. Op-
timal solutions (in the form of a Pareto frontier) are marked with colored circles,
whereas all other design points evaluated during the course of optimization are
marked with black and gray-scale dots. If a design point is displayed in a darker
gray than another, this indicates that the former dominates the latter. Points hav-
ing the same gray-scale intensity means they have the same rank according to a
non-dominated sorting strategy (Deb et al., 2002). Optimal solutions have a range
of input power values from 4.31× 10−4 to 3.56× 10−3 [W], and a range of normal
force values from 6.16× 10−4 to 1.50× 10−1 [N]. The labels (a) through (f) that
identify specific marked points in Fig. 3 correspond to the texture and fluid designs
given in Fig. 4(a)-(f) and plot legends (a)-(f) of Fig. 5(a) and (b). These repre-
sentative solutions (a) through (f) were chosen subjectively based on the following
criteria: i) they should not be located in close proximity in the objective function
space; ii) they should be among the best solutions in the Pareto frontier, i.e., they
should be a point closer to the utopia point among solutions in close proximity;
iii) and they should be evenly distributed in the objective function space.

Fig. 3 Explored designs and optimal solutions (non-dominated designs) for the CEF model
case displayed in the objective function space.
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LB ≤ {var} ≤ UB : 0 ≤ ηpi ≤ (5/2)ηs , 1.0× 10−5 ≤ λi ≤ 1.0× 10−2 , 0.01 ≤ αi ≤ 0.5

(a) (b) (c) (d) (e) (f)

Fig. 4 Sample textured sector and fluid designs in the Pareto set from the CEF model case: f1
represents the first objective function (power input [W]) and f2 represents the second objective
function (normal force [N]).

(a) (b)

Fig. 5 Viscoelastic material functions of corresponding sample optimal designs from the CEF
model case. (a) shear viscosity, (b) first normal stress difference coefficient. Curves (a)-(f)
correspond to designs (a)-(f) in Figs. 3 and 4. Increased viscoelasticity (e.g. polymer additive)
appears from design (a) to (f)

Design result (a) for Case 1 (refer to design point (a) in Fig. 3, Fig. 4(a), and
Line (a) in Fig. 5(a)) is an anchor point of the Pareto set; it has the minimum
power value over all feasible designs. An anchor point is a non-dominated point
with one of the objective functions optimized, with all other objective functions
ignored. Design point (a) results when power is minimized and normal force is not
considered. This minimum-power design exhibits a relatively flat texture surface
with a small amount of asymmetry, and does not generate much normal force
(4.31 × 10−4 [N]). This design solution is Newtonian (e.g. no polymer additive)
and shows a flat shear viscosity in Line (a) of Fig. 5(a), since the polymer viscosity
values have converged to zero for all modes. Necessarily, no first normal stress
difference appears.

Design result (f) (refer to design point (f) in Fig. 3, Fig. 4(f), and Line (f)
in Figs. 5(a), (b)) is the other anchor point, which has a maximum normal force
without consideration of power input. Unlike the former anchor point, this design
has strong asymmetry with distinct elevation changes in the texture to form a
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spiral blade-like shape. As explained in our previous study, this spiral texture
design directs the fluid pressure radially inward by acting as a converging channel,
eventually generating the positive net normal force due to increased pressure near
the disc center (Lee et al., 2017b). Also, this design solution includes non-Newto-
nian fluid properties with high polymer viscosity values for both modes (ηp1 and
ηp2). High polymer viscosity lifted the plateau of the overall shear viscosity as
shown in Line (f) of Fig. 5(a) and has the highest first normal stress difference
values for the entire shear rate regime, as shown in Line (f) of Fig. 5(b). These
results are congruent with earlier studies based on Newtonian fluids where it was
observed that: i) a deeper surface reduces frictional loss, ii) symmetric surfaces
do not generate any normal force due to geometric properties, and iii) stronger
asymmetry generates larger normal forces (Lee et al., 2017b; Schuh et al., 2017).

Other designs on the Pareto frontier between these two anchor points (refer to
design points (b)-(e) in Figs. 3 and 4(b)-(e)) have consistent trends. Specifically, we
observe that: i) the general shape of the surface texture designs does not change
significantly, but steeper inclines in the texture are required to generate higher
normal forces, and ii) an increased polymer viscosity and a decreased nonlinearity
(anisotropy described by the mobility factor) help obtain higher normal forces.
These results show that the nonlinearity mainly plays a role when we optimize both
objective functions simultaneously. An increased polymer viscosity tends to help
increase load capacity, and increased nonlinearity helps reduce frictional losses. It
should be noted that these responses are non-monotonic and have optimum values
for achieving a certain balance between the two objectives.

To quantify the numerical solver uncertainty, solver parameter sensitivities
were analyzed at the six selected solution points identified as (a)-(f) in Fig. 3.
The solver parameter sensitivities are computed by obtaining deviations in the
objective function values with predictable deviation possibilities in parameters,
such as radius of the rotating disc (Ro), minimum controlled gap height between
discs (hmin), angular velocity of rotating disc (Ω), solvent viscosity (ηs), and sol-
vent density (ρs), using the differential sensitivity analysis method. Deviations in
parameters Ro and ρs affect less than 1% in both objective functions. Deviations
in parameters Ω and ηs make changes between 1 to 3% in either or both objec-
tives. Thus, this numerical solver is reliable for these four parameters. However, a
deviation in hmin results in approximately 4% change in the first objective (power
input) and about 11% change in the second objective (normal force). Thus, re-
moving the offset in the gap height between discs is very important specifically
for maintaining accuracy in normal force prediction. Detailed sensitivity analysis
results are given in Table 1 in Sect. 4 of the Supplementary Materials.

4.2 Case 2: Higher-fidelity model with Giesekus fluid

Solutions of the design problem Case 2 (multi-mode Giesekus model with transient
Cauchy momentum equation) are illustrated in the objective function space in
Fig. 6. As with the CEF model (Fig. 3), the direction of desired performance is
toward the top-left corner, and the labeling strategy is kept consistent. Optimal
solutions have a range of power input from 4.42 × 10−4 to 3.99 × 10−3 [W], and
a normal force range of 1.11 × 10−3 to 1.29 × 10−1 [N]. The labels (a) through
(f) indicate specific non-dominated points in Fig. 6 that correspond to the texture
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and fluid designs shown in Figs. 7(a)-(f) and plot legends (a)-(f) of Figs. 8(a) and
(b).

Fig. 6 Explored designs and optimal solutions (non-dominated designs) for the multi-mode
Giesekus model case in the objective function space.

LB ≤ {var} ≤ UB : 0 ≤ ηpi ≤ (5/2)ηs , 1.0× 10−5 ≤ λi ≤ 1.0× 10−2 , 0.01 ≤ αi ≤ 0.5

(a) (b) (c) (d) (e) (f)

Fig. 7 Sample textured sector and fluid designs in the Pareto set from the multi-mode
Giesekus model case: f1 represents the first objective function (power input [W]) and f2
represents the second objective function (normal force [N]).
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(a) (b)

Fig. 8 Viscoelastic material functions of corresponding sample optimal designs from the
Giesekus model case. (a) shear viscosity, (b) first normal stress difference coefficient. Curves
(a)-(f) correspond to designs (a)-(f) in Figs. 6 and 7. Viscoelasticity (e.g. polymer additive)
generally increases from design (a)-(f).

Design result (a) of Case 2 (refer to design point (a) in Fig. 6, Fig. 7(a),
and Line (a) in Figs. 8(a)) is the anchor point with minimum power input. This
design shows a relatively flat texture surface with a small amount of asymmetry
and Newtonian fluid properties, as was observed in Case 1. The maximum normal
force anchor point is design point (f) in Fig. 6 (also in Fig. 7(f) and Line (f) in Fig.
8(a),(b)). This design has the most distinct elevation changes in the texture, and,
similar to the previous case, forms a spiral blade-like shape. As we see in Case
1, this design has the second highest plateau value in shear viscosity as shown
in Fig. 8(a), and high first normal stress difference value as shown in Fig. 8(b).
As observed in these results, having a larger first normal stress difference at a
higher shear rate has a more significant impact on generating overall normal force
than when operating in a lower shear rate regime. Although flow described by the
Giesekus model can exhibit second normal stress difference (Ψ2) effects, the results
show that magnitudes of Ψ2 are at least 1 to 2 orders of magnitude smaller than
Ψ1 and do not contribute a meaningful amount of normal force generation.

Other designs on the Pareto frontier between these two anchor points (refer to
design points (b)-(e) in Fig. 6 and Figs. 7(b)-(e)) also exhibit consistent trends: i)
the surface texture shapes do not change significantly, but larger elevation changes
are needed to acquire higher normal forces, and ii) an increased polymer viscosity
is associated with higher normal forces, and iii) the nonlinearity (mobility factor)
is maintained with low (but non-zero) values for the entire range of designs. Thus,
for case 2, we can observe an increase in the normal force with a simultaneous
increase in the power input as polymer viscosity values in modes 1 and 2 increase
(from design (b) through (f)). However, all the optimal solutions converged to low
mobility factor values, suggesting that shear thinning is not desirable. Also, the
optimal textures from Case 2 are in general deeper than those for Case 1. Design
point (f) in Fig. 8(b) shows a different trend when comparing to other design
points in Case 2 or Case 1. Even though Ψ1 is lower in (f) than in (e), it produces
a larger normal force. This is because the normal force is the integral of the normal
stress difference times the squared shear rate over the entire textured domain. At
the higher shear rate values, (f) is larger than (e), resulting in a larger contribution
to the normal force. This is consistent with the notion that shear thinning in the
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normal stress differences decreases the normal force. Therefore, other designs not
considered here that keep the shear thinning profile for the viscosity while having
a nearly constant Psi1 across the desired shear rate range may produce better
lubrication results.

To quantify the numerical solver uncertainty, solver parameter sensitivities
were analyzed at the six selected solution points identified as (a)-(f) in Fig. 6. The
solver parameter sensitivities are computed using the same procedure described
in Sect. 4.1. Deviations in parameters Ro and ρs produce up to 1% differences
in both objective functions. Deviations in parameters Ω and ηs make changes be-
tween 1 to 3% in either or both objectives. With these results, we can conclude that
this numerical solver is reliable for these four parameters. However, a deviation
in hmin produces up to 5% change in the first objective (power input) and about
10% change in the second objective (normal force). Thus, as we concluded earlier,
removing the offset in the gap height between discs is very important for main-
taining accuracy in normal force prediction. Detailed sensitivity analysis results
are given in Table 2 in Sect. 4 of the Supplementary Materials.

4.3 Case 0: Newtonian Fluid Model Case Result

An additional study is performed here using a Newtonian fluid model with a
transient Cauchy momentum equation to provide a reference solution (Case 0).
Solutions of this case are shown in Fig. 9. Optimal solutions have a range of power
input from 3.43×10−4 to 6.73×10−4 [W], and a range of normal force values from
1.45×10−4 to 2.51×10−2 [N]. The labels (a) through (f) indicating specific marked
points in Fig. 9 correspond to the texture and fluid designs given in Figs. 10(a)-(f).

Fig. 9 Explored designs and optimal solutions (non-dominated designs) for the Newtonian
fluid model case in the objective function space.
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(a) (b) (c) (d) (e) (f)

Fig. 10 Sample textured sector designs in the Pareto set from the Newtonian fluid model
case: f1 represents the first objective function (power input [W]) and f2 represents the second
objective function (normal force [N]).

Similar to the results obtained from the non-Newtonian fluid studies, we see
analogous trends in the shape of the surface textures. An anchor point with a
minimum power input (shown as design point (a) of Case 0) has a deep and
relatively planar textured surface. The maximum normal force anchor point, shown
as design point (f), has a sharp and distinct asymmetric spiral blade-like texture
shape, which directs the fluid pressure radially inward to generate a positive net
normal force.

Other designs on the Pareto frontier between these two anchor points (refer
to Points (b)-(e) in Fig. 9 and Figs. 10(b)-(e)) have a consistent trend; unlike
the other two non-Newtonian fluid cases, the texture designs are notably different
from each other. The optimal designs on the Pareto frontier in this case show how
changes in texture design only impact generated normal force values since all the
designs have the same Newtonian fluid properties. Comparatively sudden elevation
changes in the texture are observed for entire set of design points that generate
normal force (specifically see design points (b)-(f)).

4.4 Comparisons and Discussion

4.4.1 Pareto Set Comparison

Figure 11 shows Pareto sets for three design studies simultaneously, including CEF
(Case 1), Giesekus (Case 2), and Newtonian fluid model (Case 0) studies. Dots
represent Pareto-optimal solutions (design points) in the objective function space,
while circles represent the corresponding utopia points for each of the three design
studies.
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Fig. 11 A comparison of the optimal solutions (Pareto set) of CEF, Giesekus, and Newtonian
fluid models in the objective function space.

The study based on the Newtonian fluid model serves as a reference, illustrating
how much normal force can be generated through improved texture design alone
without tailoring non-Newtonian effects. For Newtonian fluids, Pareto-optimal de-
signs span only a small range of power input levels (from 3.43×10−4 to 6.73×10−4

[W]). The maximum possible normal force generated without aid from viscoelastic
effects is 2.51× 10−2 [N].

When parameters that define fluid properties are added as design variables,
the maximum possible normal force generated is increased by a factor of six.
The CEF model case exhibits a maximum possible normal force of 1.50 × 10−1

[N], with a corresponding power input of 3.56× 10−3 [W]. Using the multi-mode
Giesekus model, we can obtain a maximum normal force of 1.29× 10−1 [N], with
a corresponding power input of 3.99 × 10−3 [W]. Although we used the same
parameterizations for designing fluids in both non-Newtonian fluid cases, we see a
significant difference in normal force generating capability. Design based on more
simplified fluid simulations (i.e., modified Reynolds equation using a CEF fluid
model) demonstrated the ability to identify designs that generate higher normal
force values, at least as predicted by these simplified models.

4.4.2 Analysis of Friction Reduction and Load Supporting Normal Force

As we see in Figs. 3, 6, and 9, the two objectives of decreasing the input power
and increasing the normal force are competing. When trying to minimize the input
power, the optimal solutions indicate no added polymer (resulting in base solvent
viscosity) and have the deepest texture profiles that result in the smallest shear
stress. However, when aiming to maximize the normal force produced, the opti-
mal solutions have polymer additives and exhibit a spiral-shaped texture profile.
Designing the fluid parameters in this region is a non-trivial task, in part due to
non-monotonic relationships between the normal force and the viscoelastic design
parameters. This suggests that optimization of the viscometric functions plays a
key role in a performance enhancement.

4.4.3 Model Comparison

Based on the above results, the two fundamental problem types are: i) simultaneous
design of texture and fluid properties, and ii) design of texture-only with fixed
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fluid properties. While the simultaneous texture and fluid design problem was
solved using two distinct numerical fluid simulation models, they correspond to
the same physical design problem. Both cases involve using a viscoelastic fluid
(polymeric solution) as the lubricant, designing the fluid properties, and designing
the texture shape. The only difference between these two cases is how the behavior
was predicted, and the simplifying assumptions made. We highlight this point
to clarify that the decision between methods can instead be made based on the
following criteria: i) computational efficiency, ii) prediction accuracy, iii) range of
numerical limits, and iv) range of types of fluid behaviors that the model can
predict. The models are compared here along these dimensions.

First, the CEF-Reynolds equation has a very efficient computational struc-
ture; the entire optimization using the MO-ASMO algorithm took only 21 min-
utes, whereas direct optimization using the NSGA-II algorithm required 85 min-
utes, both computed using a dual Xeon Gold 6130 workstation with 64 computing
threads. The steady state solution can be obtained directly without using a time
marching transient solution procedure. Also, the CEF-Reynolds equation can pre-
dict the pressure and stress of the flow field efficiently within assumptions made
during derivation. Since the CEF model can include shear-rate dependent viscos-
ity and normal stress differences in calculating the velocity and pressure fields,
the nonlinear viscoelasticity observed in our polymeric lubricant can be predicted
well. However, because of the assumptions and limitations underlying the CEF-
Reynolds equation (see Sect. 3.1.1 and Schuh (2018)), prediction accuracy may be
poor when certain flow conditions are present, such as recirculation or flow with
non-trivial inertial effects. The CEF model maps material parameters to material
properties in a less-constrained way compared to higher-fidelity options. This ad-
ditional flexibility results in a wider exploration of designs in the material property
space and higher normal force values, but may result in properties that are more
difficult to realize physically. Within the design ranges of the other models (power
input up to 2.5 [W] and normal force up to 0.1 [N]), this model produces a Pareto
frontier that mostly overlaps with the Pareto frontiers generated using the other
models.

Second, the Cauchy momentum equation with a multi-mode Giesekus model
is the most computationally expensive choice, but it can predict the fluid flow
very accurately, including inertial effects, recirculation, and other 3D effects. The
Giesekus model can also include shear-rate dependent viscosity and normal stress
difference effects on the velocity and pressure fields. Thus, this model is the most
ideal for complex flow phenomena with nonlinear viscoelasticity. However, due to
numerical instability under certain conditions, a particular set of input (shape
and fluid) parameter values cannot be evaluated with this solver. Our MO-ASMO
algorithm can handle these “unable-to-obtain-result” points by utilizing feasible re-
gion management functions based on a support vector domain description (SVDD)
strategy. Thus, we improved computational solution efficiency by avoiding training
samples that were incompatible with the model. After addressing this issue, the
MO-ASMO algorithm produced improved solutions. However, even with the effi-
cient MO-ASMO algorithm, the computation time for this optimization problem
was significant (14 hours using the same machine). The Pareto frontier for this
case overlaps with the CEF model results, but it could not produce designs with
comparably high normal force generation.
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It should be noted that the performance metric values reported in these results
are based on distinct model types. One approach to provide a more fair compar-
ison would be to evaluate Pareto-optimal designs generated by the lower-fidelity
approaches via the higher-fidelity Giesekus model. This was attempted, and unfor-
tunately a number of non-dominated solutions from the Case 0 and 1 approaches
resulted in numerical instabilities. Related ongoing work involves experimental
testing of the associated designs to provide an accurate and fair design method
comparison, but this experimental work is outside the scope of this article. When
these ongoing studies are concluded, more complete statements can be made re-
garding the behavior and utility of the design methods presented, and whether
modifications could be made to the Case 1 approach to focus design exploration
on realizable high-performance designs.
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4.4.4 Texture Shape Comparison

Texture of Fig. 4(a) design Texture of Fig. 7(a) design Texture of Fig. 10(a) design
f1=4.31E-04, f2=6.16E-04 f1=4.42E-04, f2=1.11E-03 f1=3.43E-04, f2=1.45E-04

(a) (b) (c)

Texture of Fig. 4(b) design Texture of Fig. 7(b) design Texture of Fig. 10(e) design
f1=8.69E-04, f2=3.01E-02 f1=9.12E-04, f2=3.12E-02 f1=6.00E-04, f2=2.10E-02

(d) (e) (f)

Texture of Fig. 4(f) design Texture of Fig. 7(f) design
f1=3.56E-03, f2=1.50E-01 f1=3.99E-03, f2=1.29E-01

(g) (h)

Fig. 12 Sample textured disc designs in the Pareto set from all three fluid model cases: f1
represents the first objective function (power input [W]) and f2 represents the second objective
function (normal force [N]). (a), (d), (g): results of CEF model case, (b), (e), (h): results of
Giesekus model case, and (c), (f): results of Newtonian fluid model case. (a), (b), (c) generates
nearly-zero normal force, (d), (e), (f) generates normal force of O(3E-02), and (g), (h) generates
normal force over O(1E-01), which is not available with the Newtonian fluid.

Sample texture shapes of full discs from our design solutions are compared in Fig.
12. Texture designs from the CEF model case are shown in subfigures (a), (d),
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and (g); texture designs from the Giesekus model case are shown in subfigures
(b), (e), and (h); texture designs from the Newtonian fluid model case are shown
in subfigures (c) and (f). Sample textures given here are selected to compare the
resulting optimal textures between different fluid model cases.

Designs are arranged such that the normal forces generated by each design in a
given row is similar. The first row designs ((a), (b), and (c)) are the textures that
generate nearly-zero normal forces. These surface texture designs are relatively flat
with a limited amount of asymmetry. The second row designs ((d), (e), and (f)) are
the textures that generate normal forces on the order of 3×10−2 [N]. These surface
texture designs have very sharp and large elevation changes to create a spiral
blade-like pattern as discussed in Sects. 4.1–4.3. For the Newtonian fluid model
case, which relies on the texture to generate a normal force, the resulting design
((f)) generates a normal force value close to the highest possible without non-New-
tonian fluid behavior. The third row ((g) and (h)) are the textures that generate
normal force values over 1 × 10−1 [N], and are the highest normal force values
for each of the respective design problems. Texture designs are not significantly
different from the designs in the second row. This observation indicates that normal
forces higher than what was purely achievable through only texture design depends
solely on viscoelasticity. Further design studies using sequential design strategies
(texture design optimization followed by fluid design, or vice versa) rather than
simultaneous design may provide stronger evidence for the effects of viscoelasticity
on normal force generation.

As described in Sect. 4.4.3, each simultaneous texture and fluid design study
(Cases 1 and 2) used the same design objectives and variables. In other words,
they involve the same design formulation, but use different numerical simulation
approaches for prediction. Thus, unless two different solution sets provide the exact
same objective function values, one of these two set of solutions may dominate
the other. However, it is possible that multiple solutions exhibit almost identical
performance values. This issue is connected to the question of which fluid model
or fluid solver can predict the behavior more accurately. A cross-validation of one
solution with different fluid models, as well as an experimental validation of the
solution, is needed and is a topic of ongoing work.

4.4.5 Problem Formulation Discussion

As we discussed earlier in Sect. 1, combined optimization of both fluid and sur-
face texture in the lubricated sliding contact has not been considered previously.
Thus, earlier efforts do not exist that could be used to build upon or compare to.
The simultaneous problem formulation decisions were based on the discretion of
the authors. In addition to the simultaneous approach used here, other problem
formulations could be considered, such as sequential and nested approaches. It is
known that the conventional sequential design process may not produce system-
optimal solutions, while the nested and the simultaneous design approaches can
identify system-optimal designs (Deshmukh and Allison, 2016). The nested design
method generally demands more computational expenses to the simultaneous de-
sign method. However, the nested design may outperform the simultaneous design
approach if the following conditions exist: i) when the dimension of the design
problem is not small and ii) when inner-loop subproblem can be solved efficiently
(Herber and Allison, 2019). In this study, on the other hand, two different design
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targets (fluid and texture) are solved in a single simulation routine (one of the
solvers presented in Sect. 3.1). Consequently, separating these two design targets
into inner and outer loops is computationally inefficient, although formulating the
design problem as a single optimization problem results in large number of design
variables.

While selecting a simultaneous formulation had clear benefits, determining an
effective design representation for the fluid material functions was less straightfor-
ward. Using the Giesekus fluid parameterization for designing the material func-
tions limits the solution within certain types of complex fluids. Using the Giesekus
fluid parameterization does not mean that the solution fluid is only achieved by
the polymeric additives; the same solution may be achieved via multiple different
chemical and molecular formulation strategies. However, using a different class of
fluids may result in fluid properties that cannot be realized by the Giesekus fluid
parameterization. Investigating a variety of fluid parameterizations is beyond the
scope of this study, but is an important open research question, and foundational
work has been performed recently in areas including organizing different models
for design (Ewoldt, 2014), model selection studies (Freund and Ewoldt, 2015),
and database descriptions of complex rheological properties (Nelson and Ewoldt,
2017).

5 Conclusion

In this study, we designed non-Newtonian lubricant properties and surface tex-
ture simultaneously for lubricated sliding contact using the MO-ASMO algorithm
and two non-Newtonian fluid models. The Giesekus fluid parameterization used
for both constitutive models provides practical and physically-achievable material
function shapes, but it is acknowledged that this parameterization strategy may
limit fluid system design performance. Different models and design representations
would be required to explore such an expanded design space, but would likely come
at the cost of increased solution complexity and computational expense. We ob-
tained non-dominated optimal design solutions (i.e., Pareto sets), and compared
a set of sample texture and fluid design results. We identified trends in texture
shapes, which agreed with trends from our previous studies, observed fluid param-
eter trends, and identified how fluid design influences objective function values.

The MO-ASMO algorithm was applied successfully to solve this simultane-
ous fluid and texture design problem with two objectives. A direct optimization
(using either nonlinear programming (NLP) or genetic algorithms) was impracti-
cal given our computational resources (specifically for Case 2). The MO-ASMO
algorithm enables accurate solution without requiring access to exceptionally high-
performance computing resources. A specific challenge arises when attempting to
use general-purpose NLP algorithms due to the Giesekus model stability proper-
ties. Certain combinations of texture shape and fluid parameter values cause model
divergence. An explicit and precise description of the boundary between compati-
ble and incompatible parameter values is not available, making direct application
of standard NLP solvers impractical. The MO-ASMO algorithm mitigates these
issues effectively using the SVDD strategy for adaptively constructing an explicit
boundary between regions with acceptable input values and those that lead to
divergence. Our use of the SVDD strategy is differentiated from others by en-
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capsulating observed invalid input regions to avoid during the exploration stage,
which ensures a comprehensive exploration of entire computable design space.

We observe that added viscoelasticity to the Newtonian solvent significantly
increases normal force generation from the numerical optimization results in this
study. All the optimal texture designs are qualitatively similar in shape to our
earlier studies based on a Newtonian lubricant, but viscoelasticity plays a vital
role in increasing normal force generation by up to a factor of five without a
significant change in texture design. We see that optimal textures obtained with
Newtonian and non-Newtonian fluids resulted in different shapes and elevation
changes. This shows that simultaneous design of the non-Newtonian lubricant and
surface texture is necessary to achieve overall higher system performance.

A comprehensive set of physical experiments to compare performance indices
(power input and normal force) for a carefully-selected set of numerically-optimized
texture and fluid designs is a topic of ongoing work. Preparation for the experimen-
tal measurement requires a micro-fabrication of textured discs and a formulation
of viscoelastic lubricants. Observing that all the design solutions on the Pareto
frontier have different fluid properties, a set of representative sample designs will
need to be selected carefully for comparison with simulation results. Experimental
texture fabrication, fluid formulation, and testing are outside the scope of this
article, which is focused on simulation-based optimization studies. Such future
work will build upon the targets identified in our work here, which combine the
simultaneous and coupled effects of both texture and viscoelastic fluid properties.
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