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The electrification of transportation requires a robust and efficient design of battery thermal
management systems (BTMSs). This study introduces a resistance-capacitance (RC) based
reduced order model (ROM) with additional auxiliary state variables for accurately capturing
transient thermal behavior. The study explores the trade-offs between model fidelity and utility
in BTMS control co-design (CCD) applications. BTMSs manage the temperature to ensure
battery performance, safety, and longevity. Although computational fluid dynamics (CFD)
is useful in steady and transient battery thermal analysis, full-fidelity CFD simulations are
computationally expensive, particularly within CCD optimization loops. RC-based ROMs
commonly used in early-stage design can mitigate the computational effort. These models
can be formulated at different fidelity levels by representing various battery components as
single or multiple LC bodies connected by resistance elements. The proposed augmented
RC-based ROM enhances transient simulation accuracy while maintaining low computational
cost, thereby, facilitating thorough design exploration using the CCD approach. This study
focuses on comparing model fidelity levels, and their quantifiable utility measures, such as
design accuracy and computational cost.

I. Introduction

Thermal runaway is a chain reaction process in which the decomposition of battery materials leads to smoke and
explosion. A robust and efficient battery thermal management system (BTMS) is crucial in regulating the temperature

within an appropriate range at all times to reduce the likelihood of this phenomenon [1, 2]. BTMS effectiveness is
assessed through two primary metrics: the maximum temperature increase and the largest temperature difference within
the battery pack [3]. Computational Fluid Dynamics (CFD) has become a common tool for analyzing the transient
behavior of battery systems, despite its sometimes significant computational expense and challenges with numerical
domain decomposition that can require repeated human inputs [4, 5]. Heat transfer models in CFD are simplified
in representing heat exchanges between cells within the battery pack and heat dissipation to the environment with a
continuum perspective, and the heat generation is provided directly to the battery zone in terms of a time-dependent
volumetric heat source.

In electrochemical battery modeling, physics-based electrochemical models are available to accurately predict the
reactive behaviors within individual battery cells [6]. However, for real-time simulation, equivalent circuit models
offer simplifications for concurrently predicting the battery electrochemical and thermal behaviors for control-oriented
studies [7]. First-order resistance-capacitance (RC) and second-order resistance (dual polarization) models are some of
the equivalent circuit models that have been developed.

Reduced order models (ROMs) based on a first-order lumped capacitance (LC) model are typically preferred for their
accuracy and simplicity in estimating electric charge, cell voltage, and temperature states [8]. These ROM approaches
integrate seamlessly with time-domain simulation via ordinary differential equation (ODE) solvers or direct collocation
methods [9].
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(a) (b)

Fig. 1 RC model for a single battery cell. (a) Electric circuit model; (b) Thermal model

Despite the high efficiency of RC-based ROMs in depicting the transient thermal behavior of complex thermal
systems, they exhibit several disadvantages. The primary limitation of the simple RC method is its inability to accurately
model time-dependent thermal behaviors in some cases. For instance, when a relatively small number of RC bodies
are used, the temperature of capacitance bodies instantly reacts to the change of boundary or interface conditions
due to a smeared abstraction of the material. Therefore, simple RC methods using a small number of bodies may
inaccurately predict delayed temperature responses. While multiple layers of RC bodies can more accurately depict
delayed responses, this results in increased model complexity.

The conflict between model accuracy and computational expense is especially important to navigate when constructing
models for use with design optimization studies. Accurate models support identification of designs that are better
in reality, but with increased computational expense. Such studies are of increasing importance for new emerging
technologies without significant design heritage, such as electric vehicles. Integrated design optimization studies can
help identify superior designs that may be non-obvious to domain experts, especially for systems using new technology.
One class of integrated design optimization studies is Control Co-Design (CCD)[10], which leverages coupling between
physical and control system design decisions to reveal high-performance designs. CCD has proven to be an impactful
engineering design decision support strategy, including transformative impacts on energy systems [11]. Successful
CCD studies requires system models that 1) captures important system transients, 2) accounts for physical system
design changes, 3) has reasonable levels of computational expense, and 4) has sufficient accuracy in terms of identifying
optimization solutions that translate to high-performance systems in reality.

In this article we introduce a strategy for producing BTMS ROMs that meet the needs of future CCD optimization
studies. Specifically, this strategy addresses the issues identified above regarding the shortcomings of RC models through
strategic enhancement of these models. We introduce an augmented RC-based ROM with auxiliary state variables
that supports prediction of key transient behaviors. Building on the basic RC-based ROM, we integrate auxiliary state
variables and their associated model parameters into the state space model. These model parameters are trained using
transient simulation results from higher-fidelity CFD models through system identification techniques. This method
allows the lower-fidelity state space model to accurately capture delayed transient temperature changes in response to
time-varied thermal loadings. Moreover, the augmented RC-based ROM provides more accurate results with lower
computational cost compared to the expensive CFD model and simplified LC model.

The rest of the paper is organized as follows. Section II explains the modeling methodologies used in this study. In
Sect. II.A, the battery control system for the battery cell is described. In Sect. II.B, the CFD model for the battery thermal
management system has been delineated. In Sect. II.C, the solutions for the state space model are presented. Sect. II.D,
presents the proposed framework for the additional state model. In Sect. III and Sect. IV, results and conclusions of the
paper are described, respectively.

II. Methods

A. Battery Control System for Single Battery Cell
The resistance-capacitance battery model for a single cell (Ref. [12, 13]) is presented in Fig. 1(a). The model

consists of two capacitors and three resistors to represent slower and faster electric charge and discharge behaviors of
the battery cell. The capacitor 𝐶𝑏 reflects the main storage capacitance of the battery, whereas 𝐶𝑐 models the fast
charge-discharge aspect of the battery, which is substantially smaller than 𝐶𝑏. Here, the RC-based battery cell model is
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(a) (b)

Fig. 2 Cross-section view of three-dimensional battery cell computational model. (a) One third battery cell
model; (b) Full battery cell model. Dashed lines denote symmetric boundary condition.

derived in the following series of equations. First, potential drops across the resistors using Ohm’s law are represented
in Eqns. (1) and (2), given as:

𝐶𝑏 ¤𝑣𝑏 = −𝑖𝑏 (1)
𝐶𝑐 ¤𝑣𝑐 = −𝑖𝑐, (2)

where, ¤𝑣𝑏 is the rate of change of the voltage for the 𝐶𝑏, 𝑖𝑏 is the current through the 𝐶𝑏, ¤𝑣𝑐 is rate of change of the
voltage for the capacitor 𝐶𝑐, and 𝑖𝑐 is the current through the capacitor 𝐶𝑐. By applying Kirchhoff’s second law in the
left loop of the circuit shown in Fig. 1(a) we obtain:

𝑣𝑏 − 𝑖𝑏𝑅𝑏 = 𝑣𝑐 − 𝑖𝑐𝑅𝑐, (3)

where 𝑣𝑏 is the voltage rate for the capacitor 𝐶𝑏, 𝑅𝑏 is the resistance for the leftmost junction in Fig. 1(a), 𝑣𝑐 is the
voltage for the capacitor 𝐶𝑐, and 𝑅𝑐 is is the resistance for the rightmost junction in Fig. 1(a). Electrical current
conservation in the junction requires that:

𝑖 = 𝑖𝑏 + 𝑖𝑐, (4)

where 𝑖 is the terminal current. Kirchhoff’s second law can also be applied to the right loop of the circuit, given as:

𝑣 = 𝑣𝑐 − 𝑖𝑐𝑅𝑐 − 𝑖𝑅, (5)

where 𝑣 is the terminal voltage and 𝑅 is the terminal resistance. Now, heat balances between input and output are
represented by Eqns. (6) and (7), given as:

𝑞 =
𝑇 − 𝑇𝑎

𝑅𝑇

(6)

𝐶𝑇
¤𝑇 = 𝑞𝑏 − 𝑞 − 𝑞𝑎𝑐, (7)

where 𝑞 is the conduction heat transfer rate in watts (W), 𝑞𝑎𝑐 is the convection heat transfer rate from battery to thermally
conductive structures (TCS) air domain in (W), 𝑇 is the cell temperature, 𝑇𝑎 is the ambient or surrounding temperature,
𝑅𝑇 is the equivalent thermal resistance in ◦C/W, 𝐶𝑇 is the equivalent heat capacitance in J/◦C, ¤𝑇 is the rate of change of
cell temperature, and 𝑞𝑏 is the heat generation rate within the cell in W. Note that the heat transfer rate (𝑞𝑏) generated
by the battery cell is conducted through the battery cell (𝑞).

B. CFD Model
In this study, a liquid-cooled BTMS is used for cooling the battery pack. The battery pack is comprised of cylindrical

battery cells (specifically, Lithium-ion 18650 battery cells), base plates, integrated circuit (IC) control units, and liquid
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channels with heat conduction devices. Each cell in this system is encased by three thermally conductive structures
(TCS). Notably, each TCS incorporates a cylindrical liquid channel at its center for liquid coolant flow. The design of
each TCS features three curved thermal contacts, the curvature radius of which matches the radius of the cylindrical
battery cell [14]. The cooling water is distributed from an upper reservoir and flows into each TCS in parallel. The
heat generated by the batteries is conducted to the TCS and dissipated via convection by the cooling water. The heated
coolant exits the system through an outlet in the bottom reservoir. This study employs a one-third battery cell model,
with symmetry assumptions illustrated in Fig. 2(a). Another option for the same configuration is a full battery cell
model, shown in Fig. 2(b). However, due to physical symmetry, the one-third model is sufficient to capture important
thermal behaviors.

The Li-ion battery is assumed to be composed of NCR material (i.e., Lithium nickel cobalt aluminum oxide, or
LiNiCoAlO2). Aluminum is used for the TCS material, and water is used for liquid coolant. The numerical studies have
been conducted using a pressure-based segregated CFD solver formulation with the energy transport equation and SST
k-𝜔 turbulence model. Initially, steady state analysis has been performed in the one-third battery cell model using a
mass flow rate inlet of 10−5 kg/s. The maximum heat generation rate of the battery for the maximum power output has
been quantified in 12. Considering the convergence rate, at least 2,000 iterations (with an algebraic multigrid technique)
were performed for all simulation cases. The temperature and pressure of the TCS flow channel entry and exit are
reported based on stable steady state analysis. Moreover, the heat transfer rate from battery cell to TCS air domain (𝑞𝑎𝑐)
and the surrounding temperature of the TCS air domain (𝑇𝑎) are calculated from a similar stable steady-state model.
These parameters are provided to the LC model to construct the state space equations.

1. Heat Capacitance Calculation
The specific heat capacity of the battery is determined through the specific heat capacity of its constituent materials

[15]. The specific heat capacity of the cell can be expressed via the subsequent equation, given as:

𝑐𝑝 =

∑
𝑖 𝜌𝑖𝑐𝑖𝑉𝑖

𝜌
∑

𝑖 𝑉𝑖
, (8)

where 𝜌 and 𝜌𝑖 denote the density of the cell and the cell constituent materials, respectively. The specific heat capacity
of the cell and the constituent materials are denoted as 𝑐𝑝 and 𝑐𝑖 , respectively. The volume of the cell constituent is
represented by 𝑉𝑖 . The heat capacitance is calculated by dividing the specific heat by the cell mass [16].

2. Equivalent Resistance Calculation
Equivalent thermal resistance is characterized as the ratio of the temperature difference across two surfaces of a

material to the rate of heat flux per unit area [17]. Greater thermal resistance indicates less heat loss. Thermal resistance
value depends on both the thermal conductivity and the thickness between two surfaces of the material. The thermal
resistance (𝑅𝑇 ) can be expressed by the subsequent equation, given as:

𝑅𝑇 =
ℎ

𝜆
, (9)

where ℎ is the thickness towards the flow channel and 𝜆 is the thermal conductivity of the material.

C. State Space Solution
The state space equations can be solved using general ODE solvers, such as ode45 in Matlab. To model the

delayed thermal relaxation from the LC bodies, two auxiliary states, 𝜓1 and 𝜓2, have been integrated in the state space
model. These auxiliary states aim to modulate the time-dependent response of the original state variable that denotes the
component temperature, thus mimicking the delayed temperature responses of the real thermal system. Their coefficients
have dependencies with each other and on temperature. The augmented state space equations are derived below.

The state space equations for voltage rates ¤𝑣𝑏 and ¤𝑣𝑐 are given as:

¤𝑣𝑏 =
(𝑣𝑏 − 𝑣𝑐)

(𝑅𝑐 + 𝑅𝑏)𝐶𝑏

+ 𝑅𝑐𝑖

(𝑅𝑐 + 𝑅𝑏)𝐶𝑏

,

¤𝑣𝑐 =
(𝑣𝑐 − 𝑣𝑏)

(𝑅𝑐 + 𝑅𝑏)𝐶𝑐

+ 𝑅𝑏𝑖

(𝑅𝑐 + 𝑅𝑏)𝐶𝑐

. (10)
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These two voltage rates both depend on quantities: 𝑣𝑏, 𝑣𝑐, 𝑅𝑐, 𝑅𝑏, 𝐶𝑐, and 𝑖. The state space equation for the rate of
cell temperature change is given as:

¤𝑇 =
𝑞𝑏

𝐶𝑇

− 𝑇

𝐶𝑇𝑅𝑇

+ 𝑇𝑎

𝐶𝑇𝑅𝑇

− 𝑞𝑎𝑐

𝐶𝑇

, (11)

which is derived by substituting Eqn. (6) into Eqn. (7).
According to Ref. [18], the internal heat generation rate of a Li-ion battery (LIB) can be divided into the following

parts: polarization reaction heat, joule heat, chemical reaction heat, and electrolyte and solid electrolyte interphase
(SEI) layer decomposition. Among the theoretical algorithms to estimate the heat production rate of batteries, a
well-established option is the one proposed in Ref. [19] where the heat generation rate of battery can be given as:

𝑞𝑏 = 𝑖2𝑅 − 𝑖𝑇 ′
(
𝑑𝑈𝑜𝑐

𝑑𝑇

)
(12)

In this equation, 𝑞𝑏 is the heat generation rate of the battery cell, 𝑖 is the discharge current of the battery cell and
𝑑𝑈𝑜𝑐/𝑑𝑇 is the temperature coefficient of open-circuit voltage. An equivalent resistance 𝑅 is obtained during the
discharge process. The equivalent resistance 𝑅 and the temperature coefficient (𝑑𝑈𝑜𝑐/𝑑𝑇) are quantified in [20] by
means of an empirical relation between state of charge (SOC), 𝑑𝑈𝑜𝑐/𝑑𝑇 , and the equivalent resistance 𝑅 for a particular
cell temperature 𝑇 ′. By using Eqns. (1) through (7), (11), and (12), the equation of the cell temperature change rate can
be formulated as:

¤𝑇 =

𝑖2𝑅 − 𝑖𝑇 ′
(
𝑑𝑈𝑜𝑐

𝑑𝑇

)
𝐶𝑇

− 𝑇

𝐶𝑇𝑅𝑇

+ 𝑇𝑎

𝐶𝑇𝑅𝑇

− 𝑞𝑎𝑐

𝐶𝑇

, (13)

The state space equation for the rate of cell temperature change with the two additional auxiliary states, 𝜓1 and 𝜓2, is
then represented by:

¤𝑇 =

𝑖2𝑅 − 𝑖𝑇 ′
(
𝑑𝑈𝑜𝑐

𝑑𝑇

)
𝐶𝑇

− 𝑇

𝐶𝑇𝑅𝑇

+ 𝑇𝑎

𝐶𝑇𝑅𝑇

− 𝑞𝑎𝑐

𝐶𝑇

+ F [𝜓1, 𝜓2] , (14)

where F is an arbitrary function consisting of 𝜓1 and 𝜓2. The state space equation of the rate of change of these
auxiliary variables is given as:

¤𝜓1 = ¤𝜓1 (𝜓1, 𝜓2) ,
¤𝜓2 = ¤𝜓2 (𝜓1, 𝜓2) . (15)

Here, without considering the additional auxiliary state variables, the overall state space equations are given as:

𝑑

𝑑𝑡



𝑣𝑏

𝑣𝑐

𝑇


=



(𝑣𝑏 − 𝑣𝑐)
(𝑅𝑐 + 𝑅𝑏)𝐶𝑏

+ 𝑅𝑐𝑖

(𝑅𝑐 + 𝑅𝑏)𝐶𝑏

(𝑣𝑐 − 𝑣𝑏)
(𝑅𝑐 + 𝑅𝑏)𝐶𝑐

+ 𝑅𝑏𝑖

(𝑅𝑐 + 𝑅𝑏)𝐶𝑐

𝑖2𝑅 − 𝑖𝑇 ′
(
𝑑𝑈𝑜𝑐

𝑑𝑇

)
𝐶𝑇

− 𝑇

𝐶𝑇𝑅𝑇

+ 𝑇𝑎

𝐶𝑇𝑅𝑇

− 𝑞𝑎𝑐

𝐶𝑇


. (16)

Due to the nonlinearity of the rate of the temperature change equation, the overall state space equation cannot be
represented in a linear form. With the additional auxiliary variables, the equation now includes an additional term in the
rate of temperature change equation. Here, we assume all arbitrary relationships involving the auxiliary state variables
are linear. The rate of temperature change is assumed to linearly depend upon all auxiliary state variables (𝜓1 and 𝜓2).
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Lumped Capacitance (LC) Model

Parameters of additional states are 
considered as input design variables

Optimization

Minimize temperature trajectory 
difference between results obtained by 

(1) transient CFD and (2) LC model 

Solution Converged?

Model parameters obtained for
the LC with Aux Parameters model

Yes

No

Update Aux 
Parameters 

(coefficients and 
initial guesses)

Fig. 3 Proposed Framework for Additional State Model

With these assumptions, the state space equations with the additional auxiliary state variables can be represented as:

𝑑

𝑑𝑡



𝑣𝑏

𝑣𝑐

𝑇

𝜓1

𝜓2



=



(𝑣𝑏 − 𝑣𝑐)
(𝑅𝑐 + 𝑅𝑏)𝐶𝑏

+ 𝑅𝑐𝑖

(𝑅𝑐 + 𝑅𝑏)𝐶𝑏

(𝑣𝑐 − 𝑣𝑏)
(𝑅𝑐 + 𝑅𝑏)𝐶𝑐

+ 𝑅𝑏𝑖

(𝑅𝑐 + 𝑅𝑏)𝐶𝑐

𝑖2𝑅 − 𝑖𝑇 ′
(
𝑑𝑈𝑜𝑐

𝑑𝑇

)
𝐶𝑇

− 𝑇

𝐶𝑇𝑅𝑇

+ 𝑇𝑎

𝐶𝑇𝑅𝑇

− 𝑞𝑎𝑐

𝐶𝑇

+𝑎34𝜓1 + 𝑎35𝜓2

𝑎44𝜓1 + 𝑎45𝜓2

𝑎54𝜓1 + 𝑎55𝜓2



. (17)

where the state variables for this set of state space equations are 𝑣𝑏, 𝑣𝑐, 𝑇 , 𝜓1, and 𝜓2. The unknown coefficients of the
state space equation are identified here via least square minimization of two transient temperature response curves from
the transient CFD model and the augmented RC-based ROM formulated in Eqn. (17). To facilitate the easier numerical
discovery of these unknown coefficients, an additional constraint is included in the optimization problem that requires
the peak temperatures must be equal. With this augmented RC-based ROM approach, a single one-third battery cell
model will be trained.

D. Proposed Framework with Additional States
The additional state model is a simplified model which predicts the system behavior similar to the transient analysis

with a low computational cost. The proposed framework for the additional state model is depicted in Fig 3. The
parameters of the additional state are considered as optimization variables, and they are obtained by minimizing
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(a) Constant heat load scenario (b) Continuous on-off Scenario

Fig. 4 Battery load scenarios

temperature trajectory differences between results obtained by transient CFD and LC models, given as:

minimize

(
𝑛∑︁

𝑛=0
𝑇lumped (𝑖) −

𝑛∑︁
𝑛=0

𝑇transient (𝑖)
)2

+ 𝜌
(
𝑇𝐴lumped − 𝑇𝐴transient

)2

subject to 𝑇𝐿,max = 𝑇𝑇,max

. (18)

The objective function for minimization is the difference between the temperature trajectory points predicted by the LC
model and the transient analysis. The temperature trajectory area between the LC and the transient analysis is penalized
in the objective function with penalty parameter, 𝜌. The peak temperature of the transient analysis 𝑇𝑇,max and the LC
model 𝑇𝐿,max is constrained explicitly in the optimization problem as an equality constraint.

III. Results
The simulation of electric vehicles for various operating conditions is crucial to avoid the thermal runaway, which

can lead to fire and explosions. In this study, the electric vehicle simulation is conducted for different scenarios such as
constant heat load and continuous on-off conditions with models under various fidelity levels, and compared for the
potential use in CCD optimization problems. In the constant heat load case, the battery is discharged with an interval of
700 s with two heat loads. Another scenario is to continuously turn on and off the battery with a particular depth of
discharge. The transient analysis has been conducted using the CFD model (defined in Sect. II.B) with varying time
whereas the LC model without and with additional states have been formulated using state space representation (defined
in Sect. II.C).

The LC model predicts the trend of the transient system behavior in simplified way, giving rough predictions
of the system behaviors. The proposed LC model with additional states is formulated to approximately forecast the
transient simulation more closely by compensating the errors using additional states, with associated parameters trained
by data-driven approach. The comparison plot between LC model and transient analysis for constant heat load and
continuous on-off scenario are illustrated in Fig. 4a and Fig. 4b. The LC model with additional states illustrates a trend
similar to the transient simulation with less computational error than the LC model without states. Moreover, the LC
model with additional states performs well even in complicated situations, i.e., continuous on-off scenarios. However,
the computational error of the LC model with additional states for the continuous on-off scenario is larger than the
constant heat load case due to multiple reasons.

First, the training did not enforce thermodynamic conservation laws. The additional state model parameters are
trained from a purely data-driven point of view. The curves from the LC model with additional states closely track
the responses of the CFD model results with good accuracy. However, the absence of thermodynamic conservation
enforcement might cause failure in highly complex scenarios outside of system designers’ prediction range, such as
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Table 1 Computational Cost for Different Model Fidelity Levels

Model Fidelity Case Computational Times (s)

Add. state training
Constant Continuous

Ref CFD Training heat load on-off

CFD Model N/A N/A 12,420 2,700
LC Model N/A N/A 0.5417 1.162

LC Model with Additional States 5,400 1,160 3.081 2.614

continuous change of utilization modes. In this study, this type of complexity is represented using the continuous on-off
scenario. Specifically, in this scenario, energy conservation is not maintained during the initial 60 s. The cooling slope
is significantly steeper than the CFD model in a time range from 240 to 300 s. These two observations are strong clues
that energy conservation needs to be enforced in an improved reduced order model with additional states.

Second, related to the non-conservative nature, adjusting the additional parameters in the model during training may
artificially reduce the temperature change slopes, because the model parameters are trained using an initial guess from
the over-predicting model (simple LC-model) and the data-driven training tries to make these temperature trajectories
closer to the higher-fidelity CFD responses. This reduces the overall derivative response, causing over-cooling behavior
in the prediction. To avoid this situation, there is a need for training the additional state parameters in heating and
cooling phases separately.

The optimization problem implemented in the current framework relies on matching the points and area between
the CFD and the LC model. Considering the energy flux and using gradient-enhanced Kriging (GEK, Ref. [21]) may
mitigate these limitations, especially when considering energy flux as an added constraint. Additionally, the current LC
model with additional states consists of two linearly-posed states, which is a minimal implementation for technical
demonstration. Increasing the number of states and allowing nonlinear auxiliary states may facilitate capturing more
accurate system behavior with greater accuracy.

The comparison between the computational costs for transient CFD model, LC model, and LC model with states is
depicted in Tab. 1. Based on the computational time in this comparison, the CFD model requires orders of magnitude
higher computational time for solving the transient conjugate heat transfer problems, which are quantified as 12,420 s and
2,700 s for each of two scenarios (constant heat load and continuous on-off). This high computational demand renders it
unsuitable for efficient optimization of control strategies. However, these simulation cases are still useful when accurately
tuning the lower-fidelity models, such as LC model with additional states. For model training purposes, the master CFD
simulation case consists of both constant heat load and continuous on-off discharge scenarios, and computation required
approximately 5,400 s for running the master CFD simulation case, and model training optimization process required
an additional 1,160 s, resulting in a total model training cost of 6,560 s. The training time for the additional states is
not small, but model training needs to be performed only once, so large training time is not a concern in cases where
multiple optimization studies will be performed (a common situtation).

The LC model with additional states has orders of magnitude lower computational time compared to the transient
CFD model. The computational times for the LC model with additional states are quantified as 3.081 s for constant heat
load and 2.614 s for continuous on-off scenarios. Still, compared with the pure LC model cases, quantified as 0.5417 s
for constant heat load and 1.162 s for continuous on-off scenarios, the LC model with additional states cases have higher
computational time. However, these differences are not a significant concern given the comparatively significant CFD
computational times.

For better visualization, the error analysis is shown in Fig. 5, where the CFD temperature (black dashed line) is
regarded as the reference temperature. Figure5a illustrates that the error is lower for the additional states model than for
the LC model for constant heat load scenario. In addition, from Fig. 5b, by analyzing the slopes, it can be seen that the
error quantity is lower for the additional states model than the LC model for continuous on-off scenario. The LC model
with additional states is therefore computationally efficient both in terms of accuracy and computational time.
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(a) Constant heat load scenario (b) Continuous on-off Scenario

Fig. 5 Reduced order model error analysis

IV. Conclusion
In this study, we compared model responses, encompassing the one-third battery cell CFD model, traditional

RC-based ROM, and our proposed augmented RC-based ROM. The augmented RC-based ROM approach offers a novel
way to accurately predict delayed temperature response in transient thermal analysis, without substantially increasing
costs. The augmented RC-based ROM model shows similar trend as the transient CFD model with lower computational
cost for both constant heat load and continuous on-off discharge scenarios. Moreover, among different model fidelity
levels, the LC model with additional states simultaneously addresses the computational cost issue of the expensive CFD
model and the error issue of the simplified LC model. The current LC model with additional states framework has a
limitation in capturing the exact system behavior in continuous on-off scenarios due to its noisy function nature. The
incorporation of the GEK and increasing the number of auxilliary states may ameliorate this limitation. Future work is
planned to complete additional comparative studies with alternative additional state ROMs (expanding our knowledge
of this strategy, and to solve CCD optimization problems using these models, comparing design utility metrics and
demonstrating the relationship between design solution accuracy and computational optimization efforts, including
human modeling effort and computational cost. The expected outcomes of this research will offer valuable insights
into developing thermal models for battery systems, contributing not only to simulating existing systems but also to
facilitating design exploration and optimization using CCD approaches.
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