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Over the past few decades, multidisciplinary design optimization (MDO) techniques have
shown great potential in generating optimal designs for complex system of systems. Monolithic
MDO methods that formulate the design problem as a single optimization problem are effective,
but present challenges in coordination. On the other hand, distributed MDO methods decompose
the design problem into different optimization problems and hence offer more modularity and
flexibility, especially when implemented by teams of optimization specialists. In this article,
one such distributed MDO method, Analytical Target Cascading (ATC), is investigated as a
candidate for the design of electric Vertical Take Off and Landing aircraft (eVTOL). Design
of eVTOLs for urban mobility has been a subject of immense interest over the past decade.
eVTOLs offer many advantages over conventional modes of urban transport such as reduced
environmental impact, utilization of vertical space for transportation, and competitive cost of
transportation. Most current efforts for eVTOL design are in relatively early stages. Hence,
distributed MDO methods that can effectively consider complex interactions between different
subsystems and disciplines can help support eVTOL design efforts. In this study, ATC is
implemented to optimize the total cost per flight for a simple mission, involving take-off to
a set altitude, cruising at constant velocity for a range of 50-150 km, and landing, all while
carrying a given payload. The key design parameters that are optimized as a part of this study
are the mass of aircraft and individual subsystems, cruise velocity, wingspan, and radius of
the propeller. Furthermore, a comparison of the resulting optimal solutions using ATC and
monolithic MDO methods is presented. General observations are also articulated regarding
potential computational advantages, such as parallelism and tailored solution algorithms, as
well as organizational considerations, such as distributed iterative subproblem formulation
refinement conducted by human subject matter experts and team coordination.

I. Nomenclature

𝑚𝑥 = mass of component 𝑥
𝑟prop = radius of propeller
𝑐prop = chord length of propeller
𝑏span = wingspan
𝑉 = cruise velocity
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AR = wing aspect ratio
rootAoA = angle of attack at root of the wing
𝑃hover = power required to be generated by each motor during the hover phase
[motor = efficiency of motor

II. Introduction
Multidisciplinary design optimization (MDO) has gained significant attention for system design applications over

the past few decades. Early MDO methods primarily focused on incorporating additional disciplines into structural
optimization problems [1], later expanding to engineering-scale applications such as aircraft wing design [2], spacecraft
[3], and complete business jets [4]. A comprehensive introduction to MDO methods is available in Martins and Lambe
[5]. eVTOL design can be modeled as an engineering system design optimization problem, requiring the coordination
of various subsystems such as propulsion, wings, motors, and batteries while simultaneously optimizing for system-level
objectives, such as cost per flight or total aircraft mass. Although numerous MDO methods can help address complex
optimization problem of designing an eVTOL, it is crucial to select a technique that considers the physical and design
decision interactions between different subsystems in the context of overall system utility.

MDO methods can be categorized into two main types, monolithic and distributed, depending upon the number
of optimization problems in the overall problem formulation [5, 6]. Monolithic methods solve a single optimization
problem, while distributed methods divide it into multiple formulations according to a partitioning criterion, such as
physics discipline or physical subsystems. One early motivation for developing distributed MDO methods was to mirror
engineering design organizations, wherein various teams work on distinct subsystems or disciplines while maintaining
strong communication channels across teams [1]. Isolation of different disciplines/subsystems in distributed MDO
methods allows engineering teams to work independently (on optimization subproblems) yet synergistically (informed
by system optimization results) to support engineers in making design decisions that align with improving overall system
value.

Engineering design optimization studies involve more than numerical solution. One model for describing the usually
iterative process is termed the Engineering Design Optimization (EDO) Problem Formulation Cycle (PFC) that involve
the following phases: (1) problem formulation construction, (2) problem formulation analysis, (3) problem solution,
and (4) solution analysis. The EDO PFC was first introduced in an undergraduate EDO course [7] as a strategy to
accelerate the process of learning practical skill in performing EDO studies of value to engineering organizations,
and has been used to inform studies of EDO methods [8]. While computational optimization methods automate the
solution procedure in Step (3), the other steps (1, 2, and 4) require significant human effort, especially when multiple
interdisciplinary teams are involved in collaborative design practices.

While distributed MDO approaches can be more computationally expensive than monolithic solution strategies
(EDO PFC Step (3)), distributed methods have other potential advantages that could reduce the overall time and
effort required to conduct system design optimization studies. Specifically, distributed MDO methods partition the
system optimization problem into multiple separate disciplinary domain or subsystem optimization subproblems. This
frees individual engineers or specialist groups to focus on constructing, solving, and refining optimizing subproblem
formulations. In contrast, monolithic optimization approaches require that the larger system design team negotiates and
agrees upon a single system-wide problem formulation. Distributed MDO methods can help to reduce the complexity
of the human-centered EDO PFC tasks, including agreeing on a formulation and iteratively refining the solution
implementation and the formulation. In other words, distributed MDO can be advantageous in the context of a team
design environment, due to their independent, modular, and parallel nature. In addition to supporting parallel computing,
distributed MDO supports parallel execution of significant human expert tasks. This article introduces the concept
that distributed MDO may have broader value in an organizational context due to support of parallel human tasks, but
rigorous studies of a range of organizational types, system design projects, and MDO strategies are needed to confirm
this potential benefit of MDO.

Analytical Target Cascading (ATC) is a distributed MDO method that emulates the hierarchical structure of some
engineering organizations, or hierarchical relationships between subsystems and components within a larger system
[9–11], (organizational structure sometimes, but not always, aligns with system structure [12]). ATC is a multi-level
MDO formulation that involves propagating targets and responses through the hierarchical structure until a consistent
solution is achieved. The targets and responses at each iteration are the result of the system and the individual
optimization problems, respectively, which in turn ensures that the value of the overall objective function is minimized.
Several different versions of ATC formulations exist in the literature; the formulation used here is based on the version
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introduced by Tosserams et al. [13].
The specific problem of eVTOL vehicle design was chosen for this study owing to the rich interactions between its

different subsystems. The concept of an eVTOL vehicle originated with the need to develop an urban transport aircraft
that functions well in both lift and cruise phases of flight while being powered by a battery. Although helicopters can
take off and land vertically, the performance of helicopters during the cruise phase is lower than other aircraft [14].
eVTOL vehicles combine the vertical take-off and landing functionality of helicopters with the cruise phase efficiency
of conventional aircraft. There are many proposed configurations of eVTOLs, including the tilt wing, tilt-rotor, and
multi-rotor designs. This study focuses on the design of a tilt-wing eVTOL aircraft. There are several crucial subsystems
within an eVTOL that are inherently coupled with each other. For example, the thrust that is needed during the hover
phase of the mission depends on the motor design as well as the propeller design. Hence, it is essential that the motor
and the propeller are designed considering all of the interactions between these subsystems. These interactions add to
the complexity of engineering design problems and, therefore, eVTOL design optimization efforts.

The focus of this study is to assess the feasibility of using ATC for the complex engineering-level problem of
eVTOL design optimization and to compare the results of ATC with optimal solutions generated from monolithic MDO
formulation. The potential value of distributed MDO methods is then articulated with this comparison, both in the
context of computational performance and broader use within human design organizations.

III. Methodology

A. Analytical target Cascading
ATC was originally developed not as an MDO method but as an effective approach to cascade targets through a

hierarchical structure to support concurrent subsystem development activities while still guiding the process toward
system optimality [11]. Target cascading strategies have been used in industry systems engineering efforts, and ATC
was inspired by these existing strategies. It provides a formal way to iteratively refine design targets that accounts for
system interactions. The initial formulations for ATC included propagating system-level targets to the subsystems. If a
target for a subsystem cannot be achieved, the subsystem returns a response to that target that aims to minimize its
deviation from the response. This information can then be used by parent subproblems to adjust the target, balancing
subsystem capabilities and overall system design considerations.

With the advent of important advancements to ATC theory and methods (e.g., [13, 15]), as well as comparative
analyses of ATC and established MDO methods (e.g., [16, 17]), ATC can now be understood as a subclass of MDO
formulations. Specifically, ATC is an MDO formulation that includes a consistently-applied system-level objective
function, hierarchically distributed optimization subproblems, and an appropriate coordination algorithm for guiding
subproblem solutions toward convergence, resulting in a system-optimal solution that satisfies consistency requirements
across subproblems. Before we formulate the optimization problem, we need to identify the design variables and split
them into shared design variables and coupling variables. Additionally, each discipline can also have state variables
that are local to that specific discipline or component and are not interfaced with other subsystems. The general ATC
formulation in Eq. (1), based on the formulation introduced in Ref. [13], lays out the objective function and constraints
for each subproblem of a typical ATC formulation:

minimize:
x̄𝑖 𝑗

𝑓𝑖 𝑗
(
x̄𝑖 𝑗

)
+ 𝜙

(
t𝑖 𝑗 − r𝑖 𝑗

)
+

∑︁
𝑘∈C𝑖 𝑗

𝜙
(
t(𝑖+1)𝑘 − r(𝑖+1)𝑘

)
subject to: g𝑖 𝑗

(
x̄𝑖 𝑗

)
≤ 0

h𝑖 𝑗

(
x̄𝑖 𝑗

)
= 0

with respect to: r𝑖 𝑗 = a𝑖 𝑗
(
x𝑖 𝑗 , t(𝑖+1)𝑘1 , · · · , t(𝑖+1)𝑘𝐶𝑖 𝑗

)
x̄𝑖 𝑗 =

[
x𝑖 𝑗 , r𝑖 𝑗 , t(𝑖+1)𝑘1 , · · · , t(𝑖+1)𝑘𝐶𝑖 𝑗

]
,

(1)

where x̄𝑖 𝑗 is the vector of the design variables for subsystem 𝑗 , at level 𝑖, 𝑓𝑖 𝑗 is the local objective function at that
subsystem, t𝑖 𝑗 , r𝑖 𝑗 are the targets and responses of subsystem 𝑗 with its parent, respectively, t(𝑖+1)𝑘 , r(𝑖+1)𝑘 are the
targets and responses of subsystem 𝑘 in level 𝑖 + 1 with its parents (in level 𝑖), and g𝑖 𝑗 and h𝑖 𝑗 are the local constraints of
the subsystem 𝑗 at level 𝑖. 𝑡 (𝑖+1)𝑘𝑙 where 𝑙 = [1, 2, 3...𝐶𝑖 𝑗 ] represent the targets that are passed from level 𝑖 to subsystem
𝑙 in level (𝑖 + 1)

The coordination algorithm used in this study is the same as the one presented in Ref. [15], which introduces
Augmented Lagrangian Coordination (ALC), a generalization of ATC. This coordination method uses a penalty function
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Fig. 1 ATC formulation recursively represented in extended design structure matrix (XDSM) [18]

with linear and quadratic terms to minimize error between targets and responses. The weights v and w govern the
behavior of the linear and quadratic penalty terms, respectively. This penalty function is defined in Eq. (2):

𝜙
(
t𝑖 𝑗 − r𝑖 𝑗

)
= vT

𝑖 𝑗

(
t𝑖 𝑗 − r𝑖 𝑗

)
+

����w𝑖 𝑗 ⊗
(
t𝑖 𝑗 − r𝑖 𝑗

) ����2
2 . (2)

Here, the ⊗ operator refers to the Hadamard product (element-wise product of two equal-dimension matrices that
produces another matrix of same dimension). For a given set of weights, all subproblems are solved in a coordinated way
with the goal of finding a consistent and system-optimal solution. After completion of iterative subproblem solutions,
the weights v and w are updated to help reduce error between targets and responses. The update formulas used here are:

v𝑘+1 = v𝑘 + 2w𝑘 ⊗ w𝑘 ⊗ q𝑘

𝑤𝑘+1
𝑖 =

{
𝑤𝑘
𝑖

if
��𝑞𝑘

𝑖

�� ≤ 𝛾
��𝑞𝑘−1

𝑖

��
𝛽𝑤𝑘

𝑖
if

��𝑞𝑘
𝑖

�� > 𝛾
��𝑞𝑘−1

𝑖

�� , ,
(3)

where 𝑞𝑘
𝑖 𝑗

is
(
t𝑖 𝑗 − r𝑖 𝑗

)
at the 𝑘-th iteration. In Eq. (3), the ALC coordination method increases the penalty weights only

if the residual of the constraint has not converged by a ratio of 𝛾 (i.e., weights are updated only when necessary). This
helps to prevent the weights from growing to values large enough to cause problem ill conditioning. Along with 𝛾, 𝛽 is
another hyper parameter that can be tuned in ATC and ALC implementations. 𝛽 controls the rate at which the quadratic
weights grow over the sequence of optimization solutions.

The flowchart of a hierarchical ATC implementation is illustrated in Fig. 1. The ATC coordination algorithm first
begins by solving the system level optimization problem, iterates through all the subproblems and solves the respective
individual optimization problems based on the targets set by the system level problem. After each one of these cycles,
the residuals for both the consistency and disciplinary constraints are computed and the weights are updated accordingly.
This cycle is repeated until all the consistency constraint tolerances are met. Please note that other subproblem solution
patterns, such as solving all subproblems in parallel regardless of level, have been investigated.

B. eVTOL Problem Formulation
The primary requirement for the vehicle in this study is to perform the simple mission shown in Fig. 2. The mission

starts with a 90 second ascent phase, followed by a cruise phase at a constant velocity for a range between 50-150 km,
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Fig. 2 Simple mission formulation

Table 1 System level design variables

𝑥# Symbol Design variable Units 𝑥# Symbol Design variable Units

1 𝑟prop Radius of propeller m 6 𝐸reserve Energy required for J
reserve mission

2 𝑉 Cruise velocity m/s 7 𝑏span Wingspan m
3 𝑚batt Mass of battery kg 8 𝜔hover Hover rpm rpm
4 𝑚motor Mass of motors kg 9 [motor Efficiency of motor -
5 MTOW Maximum takeoff weight N 10 𝑚gb Mass of gearbox kg

and then ends with a 90 second descent phase. For simplicity of the problem formulation, acceleration and deceleration
phases are not modeled and ascent and descent phases are modeled as hover.

A reserve mission is also modeled to include additional safety in aircraft operation. The reserve mission involves an
additional 20 min loiter at cruise velocity. This mission constraints the minimum battery capacity of the included battery
in the aircraft. The motor sizing is constrained by the maximum power required during the mission (which corresponds
to the hover power). Other system level constraints included in this problem are given in the following section.

C. System-level Modeling
There are two system level objective functions that are considered here for eVTOL design. One is the mass of the

aircraft (excluding payload) and the other one is the cost per flight. These objective functions are computed using the
Vahana eVTOL model developed by the Airbus A3 program [19]. While the cost per flight strongly correlates with the
mass of the aircraft, it is not strictly linear. In all the results analyzed in this study we use the cost of aircraft as the
objective function. The cost per flight modeling encompasses different cost components such as tooling cost, material
cost, battery cost, motor cost, servo cost, avionics cost, operational cost, electricity cost, and other factors. Costs which
span the life cycle of the aircraft are amortized assuming 10 years of operational life and 600 hrs operation per year.

The purpose of the ATC system level formulation is to optimize the system-level objective function while
simultaneously determining appropriate targets for child subsystems. The system level subproblem also includes any
constraints on design variables that are not included in subsystem level formulations. The system-level design variables
are articulated in Table 1, and the system-level subproblem formulation is:

minimize:
𝑥

Cost per flight +
∑︁

𝑘∈[2,3,4]
𝜙 (t2𝑘 − r2𝑘)

subject to: 𝑚total ≤ MTOW
𝐸reserve ≤ 0.95𝐸batt,cap

𝑇 ≤ 𝑇max

with respect to: 𝑥 =
[
𝑟prop, 𝑉, 𝑚batt, 𝑚motor,MTOW, 𝐸reserve, 𝑆wing,RPMmotor, [motor, 𝑚gb

]
,

(4)
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where 𝑚total is the overall mass of the eVTOL vehicle, MTOW is the maximum take off weight, 𝐸reserve is the energy
required in reserve mission, 𝐸batt,cap is the maximum battery capacity, 𝑇 is the motor torque, and 𝑇max is the maximum
motor torque. The subscripts in the above formulation follows the convention presented in Eq. (1), and will be used
consistently (𝑘 ∈ [2, 3, 4]) throughout this study.

D. Component Modeling
Vehicle components (or subsystems) are the basis for the remaining ATC subproblems. This ATC formulation is

limited to two levels, so all remaining subproblems are at level 2. Other partitionings are possible, including further
decomposition into disciplinary subproblems.

Design of an eVTOL involves several complex subsystems, but here we restrict ourselves to modeling a few key
components, namely: motor, gearbox, wing, and propeller. Other components such as battery and fuselage are modeled
directly in the system level objective function using simple analytical models. The models chosen here are relatively low
fidelity; an example of a higher-fidelity eVTOL MDO study is presented in Sarojini et al. [20]. The models used here
provide enough richness to capture important trends in the system design problem, but are computationally inexpensive.
For optimization studies with the goal of producing numerical results that could inform design decisions directly, higher
fidelity models should be used.

1. Motor
All eight electric motors used in this eVTOL vehicle are identical and are modeled using an rpm-torque-efficiency

map. The sizing of the motor is determined by the maximum torque that the motor can produce [21]. The motor mass is
sized using the analytical relation given by Eq. (5):

𝑚motor = 0.03928𝑇0.8587
max , (5)

where 𝑚motor is the mass of the motor (in pound-mass) and the maximum torque 𝑇max is expressed in lb-ft.
The system-level subproblem constrains motor sizing via a torque constraint, as shown in Eq. (4). This is implicitly

enforced in the subproblems through ATC coordination. The torque constraint was placed in the system-level subproblem
instead of the motor subproblem to eliminate the need to compute hover power (needed to determine the maximum
torque) in the motor subproblem. The purpose of the motor subproblem is to output an efficiency for a given rpm and
torque. Each tilt-wing of the aircraft has four propellers, resulting in eight total required motors. The motor model
queries the rpm-torque-efficiency map and provides estimates for efficiency given a torque and speed operating point.
The optimization formulation for this subsystem is as follows:

minimize:
x

𝜙 (t12 − r12)
subject to: efficiency-map (RPMmotor, 𝑇) − [motor = 0

with respect to: x = [RPMmotor, [motor] ,
(6)

where efficiency-map represents a look-up table.

2. Gearbox
The gearbox model uses an analytical sizing model given the power transmitted, motor rpm, and propeller rpm [22].

The Vahana model, from which much of the formulation used in this study is inherited, does not use a gearbox as it
adds additional weight. However, the addition of gearboxes can also increase the overall efficiency of the aircraft by
allowing operation of the electric motor at a higher efficiency point. This can in turn reduce the battery weight, thereby
reducing the mass of the system leading to a more optimal solution. This trade-off is observed in the optimal solutions
and including a gearbox indeed results in a system with lower mass than the case where the electric motor is directly
coupled to the propeller. The analytical model for the gearbox sizing is given in Eq. (7):

𝑚gb = 0.453592^
(
hp0.76

) 𝜔0.13
motor

𝜔0.89
prop

, (7)

where ^ is an index given by the current development progress as 94 and hp is the power transmitted in HP.
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The optimization formulation for this subsystem is as follows:

minimize:
x

𝜙 (t13 − r13)
subject to: 𝑚gb = gearbox-sizing

(
𝑟prop, 𝑉,MTOW, 𝑆wing,RPMmotor, [motor, 𝑚gb

)
with respect to: x =

[
𝑟prop, 𝑉,MTOW, 𝑆wing,RPMmotor, [motor, 𝑚gb

]
,

(8)

3. Wing
The wing of the aircraft is modeled using a constant lift coefficient. Using the lift coefficient and the wing surface

area, the lift generated at stall can be computed. For a given value of stall velocity (assumed to be 35 m/s), the minimum
area of the wing that can support the weight of the aircraft can be computed. The formulation for this subsystem is as
follows:

minimize:
𝑥

𝜙 (t14 − r14)
subject to: Swing ≤ MTOW×g

1
2 𝜌V2

stall CL

with respect to: x =
[
MTOW, Swing

]
,

(9)

where 𝑔 is the acceleration due to gravity, 𝜌 is the air density, and 𝐶𝐿 is the aircraft lift coefficient.

E. Propeller modeling and power calculation
To simplify the complexity of the ATC formulation, the propeller is modeled within the system level subproblem and

not as a separate subsystem. The propulsion system includes eight propellers with four blades each. For determining
the thrust generated by each propeller, actuator disk (AD) theory is used. The time allotted for the hover phase of the
mission is 3 minutes in which the aircraft needs to takeoff vertically and reach the cruise velocity. The thrust required
during hover phase is essentially the sum of weight of the aircraft and mass times the horizontal acceleration required
for achieving cruise velocity. Once the thrust required is known, the model uses the solidity of the propeller and other
parameters such as radius, hover rpm, and chord length, and computes the power and torque generated using Eq. (10):

𝑃hover,max = 𝑛prop𝑇prop

(
𝑘

√︄
𝑇prop

2𝜋𝜌∞𝑟2
prop

)
+ 𝜎

𝐶d0

8
𝑣tip

2

𝑇prop

𝜋𝜌∞𝑟2
prop

, (10)

where 𝐶𝑑0 and 𝑃∞ are the sectional drag coefficient and free stream air density respectively. A sectional drag coefficient
of 0.012 is used based on a NACA0012 airfoil blade profile. 𝑣tip is the tip speed of the propeller which is constrained
to Mach 0.6. 𝑘 is an empirical correction factor included to correlate the power computed from AD theory with
experimental findings [23]. The torque required can be computed as the ratio of power consumed to angular speed of
the propeller Eq. (11):

𝑄hover, max =
𝑃hover,max

𝜔
. (11)

As an alternative, blade element momentum (BEM) theory could also be used to compute the power consumed by
the propeller. In this method, the propeller blade is divided into a discrete number of subsections. The elemental thrust
generated by each discrete blade element can be computed in terms of the angle of attack, lift and drag forces. This,
combined with the axial and angular conservation of momentum from the actuator disk theory, can be used to compute
the axial flow factors iteratively [24].

Blade element momentum theory is used as well to provide a higher fidelity model compared to the AD model.
The effect of model fidelity on optimal design decisions and resulting performance can be analyzed by studying the
differences between both these implementation results.

F. ATC Formulation
A bi-level ATC formulation is used for the design optimization of an eVTOL aircraft. The top-level optimization

function includes the system level problem formulation and the bottom level performs the optimization of all the
individual subsystems. The ATC formulation optimizes for ten design variables, which are defined in Table 1.
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LEVEL 2

ATC
LEVEL 1

k=1 System-level 
optimization problem

k=3 Gearbox design 
problem

k=2 Motor design 
problem

k=4 Wing design 
problem

Fig. 3 ATC formulation for eVTOL design

Table 2 List of all shared, local and coupled variables used in eVTOL design formulation using ATC

𝑥# Symbol Classification 𝑥# Symbol Classification

1 𝑟prop shared variable 6 𝐸reserve local variable (system)
2 𝑉 shared variable 7 𝑏span coupled variable (wing)
3 𝑚batt local variable (system) 8 𝜔hover shared variable
4 𝑚motor coupled variable (motor) 9 [motor shared variable
5 MTOW coupled variable (system) 10 𝑚gb coupled variable (gearbox)

Each component level optimization problem maintains a local copy of all the shared and coupling variables which
are interfaced with the system level optimizer, and that are driven toward agreement via penalty functions. All the
component level formulations include just the penalty function as the objective function and analysis (or sizing) functions
as constraints. A schematic of the ATC formulation structure used here in provided in Fig. 3. The system-level problem
is numbered with 𝑘 = 1, whereas the subsystem-level problems are numbered with 𝑘 ∈ [2, 3, 4]. This numbering is
consistent with the formulation introduced in Eq. (1).

The same objectives and constraints are adapted for the multidisciplinary feasible (MDF) formulation, a monolithic
MDO problem formulation, against which the optimal solution of ATC is compared. In the MDF formulation, the
penalty functions pertaining to consistency constraints are not necessary as only one copy of the design variables exists,
and all the other constraints are included in a single optimization formulation with the system level objective from ATC
as the sole objective function.

IV. Results

A. Optimal design solution
Distributed optimization using ATC and monolithic optimization using MDF are performed with both higher-

(BEM) and lower- (AD) fidelity models for three different ranges. The results are compared against each other in Fig. 4.
ATC produces somewhat suboptimal solutions compared to the fully-converged results from MDF. The converged
design solutions of the ATC and MDF formulations are very close, meaning that they converged to approximately the
same solutions, but with differing solution accuracy levels. However, since the problem is tightly constrained and highly
sensitive to each of the design variables, the values of overall mass has significant differences. In all cases, MDF gives
superior solutions, while the ATC can provide comparable solutions for certain cases, including the optimal result for 50
km range with the BEM model.

Since distributed MDO approaches involve decomposition of one problem into multiple optimization problems,
the solution is to be iteratively converged between formulations, and the convergence rate and solution procedure
stability are both highly affected by the parameter values used for augmented Lagrangian penalty function, i.e., 𝛽 and 𝛾.
Analogous to learning rates, a large 𝛽 value can quickly make the algorithm skip the optimal solution and oscillate
between suboptimal points. A strategy was used for this study where the value of beta is slowly reduced as the residual
of ATC penalties begin decreasing with each iteration. This helped to ease numerical difficulties in practice.

Computational expense is a predominant disadvantage of the distributed MDO approach here. Table 3 shows
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Fig. 4 MDF vs ATC optimal solution comparison

Table 3 Computational expense comparison

Case Function evaluations Computational time

ATC with AD 68968 157 s
MDF with AD 66 17 s
ATC with BEM 97504 210 s
MDF with BEM 62 16 s

the computational time for the aforementioned design optimization cases. A single solution time for the monolithic
formulation is typically higher than a single (parallel) set of solution time for ATC subproblems. Even with extensive
tuning for fast convergence, the ATC algorithm in this study required more time to converge to a solution than MDF for
the same tolerance limits.

B. Design coupling analysis
A design coupling analysis for all the design variables is performed to better understand how we should make design

decisions when one design decision changes. The design coupling is defined in the form of Jacobian matrix, given as:

𝜕x̂∗

𝜕x̂
=


𝜕𝑥∗1/𝜕𝑥1 · · · 𝜕𝑥∗1/𝜕𝑥𝑁𝑥

...
. . .

...

𝜕𝑥∗
𝑁𝑥

/𝜕𝑥1 · · · 𝜕𝑥∗
𝑁𝑥

/𝜕𝑥𝑁𝑥

 , (12)

where x̂ denotes design variable vector normalized with the range between upper and lower bounds, given as:

x̂ ≡ x ⊘ (xub − xlb) , (13)

where the ⊘ operator denotes Hadamard division (element-wise division of vectors), and 𝑁𝑥 denotes the number of
design variables. The diagonal components of the design coupling Jacobian matrix will always be one. When taking the
logarithm of these diagonal elements, they will be equal to zero, since the logarithm of one is zero. Computing a design
coupling Jacobian matrix involves perturbing each design variable by a fixed quantity (one percent of the range between
upper and lower bounds in this problem) and the model is optimized again for remaining design variables, while the
perturbed design variable is kept fixed. The value of the design coupling Jacobian, in general, changes with design x, so
it is a challenging characteristic to quantify and interpret.

9



1 2 3 4 5 6 7 8 9 10

Perturbed design variable

10

9

8

7

6

5

4

3

2

1

In
fl
u
e
n
c
e
d
 d

e
s
ig

n
 v

a
ri
a
b
le

-1.78

0.00

1.78

Fig. 5 Colormap representing Jacobian matrix of design coupling for eVTOL optimization problem

C
o

s
t 

p
e

r 
fl
ig

h
t

M
a

x
im

u
m

 i
n

e
q

u
a

lit
y
 c

o
n

s
tr

a
in

ts

BEM

AD

(a)

C
o

s
t 

p
e

r 
fl
ig

h
t

M
a

x
im

u
m

 i
n

e
q

u
a

lit
y
 c

o
n

s
tr

a
in

ts

BEM

AD

(b)

Fig. 6 Comparison of solutions for different model fidelities (AD and BEM)

Figure 5 illustrates the design coupling Jacobian for the 10 variables listed in Table 1 based on the MDF solution
with AD model at 150 km range. The Jacobian matrix colormap represents the impact of a perturbed design variable
(column numbers) on an influenced variable (row numbers). Warmer colors signify stronger-than-linear coupling, while
cooler colors denote weaker-than-linear coupling. White corresponds to linear coupling, and as anticipated, all diagonal
elements appear white. The majority of variables exhibit strong coupling. Generally, propeller radius (𝑥1 = 𝑟prop), motor
mass (𝑥4 = 𝑚motor), and maximum takeoff weight (𝑥5 = MTOW) show less sensitivity to other design decisions, while
hover rpm (𝑥8 = 𝜔hover), reserve mission energy (𝑥6 = 𝐸reserve), wingspan (𝑥7 = 𝑏span), gearbox mass (𝑥10 = 𝑚gb), and
motor efficiency (𝑥9 = [motor) demonstrate higher susceptibility. Although most design choices significantly impact
optimal hover rpm, motor mass barely affects it, as indicated by the blue color.

It is also noteworthy that the design coupling Jacobian is diagonally asymmetric, implying that a strong impact from
one design variable on another does not guarantee a similarly strong influence in the opposite direction. For example,
if 𝑥5 is perturbed, a change in 𝑥∗3 is larger than 𝑥4. However, a change in 𝑥∗5 is relatively small when 𝑥3 is perturbed,
compared to the case when 𝑥4 is perturbed.

C. Model fidelity to design utility analysis
Model fidelity refers to how the model accurately reflects the physical reality. However, higher model fidelity does

not necessarily provide superior performance in the perspective of design utility. In this problem, we have two different
model fidelity levels (AD and BEM), and two different design methodologies (ATC and MDF); we can analyze and
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Fig. 7 Comparison of solutions for different design fidelities (ATC and MDF)

compare the design solutions with all combinations.
Figure 6 represents the system model responses cost function (blue lines) and maximum inequality constraints (red

lines) by varying design variable vector linearly between two optimal design points with AD and BEM models obtained
by (a) ATC and (b) MDF, respectively. The linear variation between 𝑛-dimensional design variable vectors x∗

𝐴
and x∗

𝐵

(with 50% of additional ranges outside of the two) are defined is defined as:

x (_) = (1 − _) x∗𝐴 + _x∗𝐵, (14)

for _ ∈ (−0.5, 1.5), and this linear variation is a similar concept to line search in optimization procedures.
In Fig. 6(a), the ATC-provided optimal design points are illustrated, along with the trends of the objective function

and the maximum values of inequality constraints. These are displayed in the linearly varying subspace between the
optimal points obtained using the AD and BEM models. Although the objective and constraint function trends are close
to each other, a small disparity in the inequality constraint functions results in a significant difference in the optimal
objective function values. Regarding the MDF solutions presented in Fig. 6(b), the difference in feasibility is even more
pronounced. Consequently, for design problems with tight constraints, a minor difference in model fidelity can lead to a
substantial discrepancy in the optimal solutions.

In Fig. 7, the objective and inequality constraint functions along the linearly varying space between ATC and MDF
design solutions is shown. Figure 7(a) shows the solutions using the AD model, while Fig. 7(b) shows the solutions
using the BEM model. This figure directly compares the solutions obtained by two different design methodologies:
ATC and MDF. In all cases, MDF method provided highly accurate design solutions converged right at the constraint
boundary, while the ATC method failed to converge to a solution at the constraint boundary, although the solutions
found were all in the feasible design domain. As we consider a design practice executed in structured organizations, the
iterative design communications are mostly focused on finding collaborative solutions within feasible design space,
while improving performance metric is another important goal. The ATC method is not failing in this goal, but with a
higher computational cost than one with monolithic formulations.

D. General purpose ATC solver
Another output of this effort is an open-source general-purpose ATC software package [25]. The hierarchical ATC

formulation along with the ALC penalty functions are packaged into a Matlab application that can be used to solve
general ATC optimization problems. The application is demonstrated in the referenced github repository using a few
algebraic optimization problems such as the Sellar problem [26], which is decomposed into a bilevel ATC formulation.

V. Conclusion
The results highlighted in this article demonstrate the capabilities and limitations of ATC in solving highly coupled

engineering design problems, such as the eVTOL aircraft design optimization. Although ATC may incur higher
computational costs, the enhanced modularity of this formulation allows for more structured interactions among various
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subsystems as compared to monolithic MDO methods.
When implemented at an organizational level, the overall cost of human effort (including formulation construction,

formulation analysis, solution analysis, and refinement) could be reduced through the application of such a structure,
primarily by minimizing the need to achieve consensus across the full design organization for all problem formulation
decisions. Individual engineering teams can focus on solving and refining the assigned subproblems, and costly
system-level model refinements are only necessary when interface adjustments are required. Another potential value of
using ATC (and decomposition-based methods) is that customized optimization algorithms, such as optimal control,
can be employed to efficiently solve specific subproblems, rather than using a general optimization solver for a single
monolithic problem.

The eVTOL design problem developed here is a simple and effective benchmark problem for distributed and
monolithic MDO formulations. All ten design variables are highly coupled to each other, so design solutions are
critically affected by any perturbed design decision. Without an MDO study, design activities of the eVTOL problem
cannot achieve high efficiency in the cost of a flight or the overall weight of the flight. The problem presented here is an
effective demonstration of the benefit of considering all design disciplinary domains at the same time.

With the comparison of solutions between different fidelity levels and design methodologies, it is apparent that
there is a need for a better distributed optimization formulations to support the use of MDO in structured organizations
to inform collaborative design practices. Future research topics may include implementing characteristics that make
monolithic formulations computationally efficient in the implementation of distributed formulations and their information
exchange structures. The ATC application framework developed in this study serves as a good starting point for research
extension to more useful distributed MDO formulations, as well as the practical design tool for any type of full-scale
multidisciplinary design problems. We expect that more implementations of distributed MDO methods will follow and
the work demonstrated in this study aids in this journey.
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