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ABSTRACT

This paper presents a comprehensive study on the hydro-
structural design exploration of floating platforms for offshore
energy systems. The study aims to develop a novel design method
that optimizes the structure of the platform for stable dynamic
responses to ocean waves, ensuring that the motion of the plat-
form remains within acceptable acceleration ranges in all six
degrees of freedom, while ensuring satisfactory of geometrical
constraints. The study delves into the free-form design of the
outer columns of the floating platform beyond conventional pre-
defined shapes to enhance the overall performance of the system.
The design utilizes a parameterization based on free-form spline
interpolation for the outer shape of the hull and fixed-shaped
pontoons to connect to the central structure where the energy-
generating device (e.g. wind turbine) is installed. The study
employs hydrostatic, hydrodynamic, and time-domain structural
dynamic simulations within a monolithic multidisciplinary de-
sign optimization formulation to evaluate the overall dynamic
responses of floating platforms. Overall, this study provides
valuable insights into the hydro-structural design of the float-
ing platforms for offshore energy systems. The optimal shape
of the outer column suggests that the concave design enhances
dynamic performance by effectively reducing the span-wise foot-
print of the platform. The results offer design considerations for
floating platform hull developers to create robust designs that
can withstand harsh metocean conditions. The findings obtained
from the optimization solutions suggest the need for advanced de-
sign exploration and shape optimization of the floating platform
hull, including the pontoons and the central structure for optimal
performance. The study also suggests employing manufactura-
bility constraints and wave loadings in all possible directions to
reflect real-world operating conditions of floating platforms.
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1. INTRODUCTION
In recent decades, the growing energy demand has high-

lighted the need for cleaner and more sustainable alternatives to
traditional energy generation methods to mitigate the impacts of
climate change [1, 2]. Consequently, research into renewable
sources of energy production has become essential to minimize
the carbon footprint associated with meeting our energy needs
[2]. Offshore locations, with their vast and relatively unobstructed
expanse, offer an ideal environment for harnessing renewable en-
ergy, despite the high capital and operational expenses of floating
and mooring devices [3, 4]. To better facilitate economic feasi-
bility, the entire system needs to be highly optimized in terms of
both energy generation efficiency and associated expenses [5, 6].

Floating platforms are necessary for the installation of off-
shore energy systems in deep water regions, where environmental
conditions are more consistent and spatial competition is mini-
mal [7]. However, these floating platforms present unique design
challenges. First, the cost of a floating platform constitutes a
significant portion of the overall expenses in offshore renewable
energy systems, exceeding 25 percent of the total capital cost
[8]. Second, compact and affordable floating platforms can lead
to larger overall system motions (displacement and acceleration)
due to reduced hydrostatic stabilities, potentially increasing the
total system cost [9].

The system engineering approach with a numerical design
optimization method can address these challenges and improve
cost efficiency [10]. Previous studies on system design have ex-
plored simple design parameters, such as component mass ratio
or parametric sizing optimization problems [9, 11, 12]. With the
goal of minimizing the levelized cost of energy (LCOE), these
studies explored the concurrent design optimization of multiple
physics disciplinary domains and component designs along with
dynamic control strategies. However, these studies employed rel-
atively simple geometric parameterizations, leaving a significant
gap between their optimal solutions and the ideally attainable
performances.

Fluid-structure interactions on floating platforms are heavily
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influenced by their geometrical shapes, as hydrodynamic forces
act in the normal direction of the surface at each point at the
fluid-structure interfaces [13]. In many engineering design prob-
lems where simple traditional shapes are commonly used, cre-
ative parameterization to create non-conventional designs without
human-imposed assumptions may enhance system performance
by orders of magnitude beyond what was generally available with
traditional forms [14, 15]. If we allow greater design freedom
beyond typical cylinders and rectangular tube shapes that are
prevalently used in floating platform components, the overall hy-
drodynamic performance of the platform could be significantly
enhanced without sacrificing hydrostatic stabilities and cost effi-
ciency. In this study, we aim to initially explore how the free-form
design of the floating platform beyond conventional predefined
shapes can be posed and explored to enhance the overall system
performance. The findings obtained from this study will later be
utilized in subsequent studies to redefine floating platform shapes
that perform better than conventional designs.

2. METHODS
2.1 Modeling of the floating body dynamics

The dynamics of the floating platform of interest is repre-
sented by a rigid body with six degrees of freedom (6-DOF)
dynamic motion framework, subject to various forcing terms.
The 6-DOF dynamics of the rigid body platform is governed by
a mass-damper-stiffness system of equations, given as:(︁

𝑀 + 𝑀𝑎,∞
)︁
𝜉𝑘 (𝑡) +

∫ 𝑡

0
𝐾 (𝑡 − 𝜏) �̇�𝑘 (𝜏) d𝜏 + (𝐶 + 𝑇) 𝜉𝑘 (𝑡)

= 𝐹FK,𝑘 + 𝐹D,𝑘 + 𝐹V,𝑘 (1)

for 𝑘 ∈ {1, 2, 3, 4, 5, 6}, where 𝑀 is the mass matrix of the
system and 𝑀𝑎,∞ is the hydrodynamic added mass matrix of the
underwater portion of the system. The vector 𝜉𝑘 represents the
floating body acceleration, the vector �̇�𝑘 represents the floating
body velocity, and the vector 𝜉𝑘 represents the floating body
displacement. The index 𝑘 corresponds to each of the six DOFs,
namely the surge, sway, heave, roll, pitch, and yaw directions.

By treating the floating structure (the platform and the
energy-generating device) as a single rigid body as a whole,
Eq. (1) provides the time-dependent motion trajectories of the
entire system. The convolution integral in the second term on the
left-hand side represents the hydrodynamic radiation-damping ef-
fect. In this convolution integral term, 𝐾 represents the radiation-
retardation kernel, which imparts the force with a memory effect
from the structure’s velocity-induced waves. On the right-hand
side, 𝐹FK,𝑘 and 𝐹D,𝑘 are the Froude-Krylov and wave diffraction
forces acting on the body in response to incident waves. Finally,
𝐹V,𝑘 corresponds to the viscous drag force, provided by the drag
equation, given as:

𝐹D,𝑘 =
1
2
𝜌𝑢2

𝑘𝐶D𝐴, (2)

where 𝑢𝑘 represents the flow velocity, 𝐶D represents the drag
coefficient, and 𝐴 represents the reference area of the submerged
portion of the floating body.

The impulsive hydrodynamic added mass tensor represents
the virtual inertia added to the system due to the acceleration of

the immersed body, and it is a function of frequency. However, for
the instantaneous response to acceleration, the infinite frequency
hydrodynamic added mass is considered, represented as 𝑀𝑎,∞ in
Eq. (1). Similarly, the radiation-damping tensor is also frequency-
dependent. The wave-retardation kernel 𝐾 is defined in the time-
domain, calculated by integrating the radiation-damping tensor
from zero to infinity frequencies for each time point, resulting in
an impulse response function.

Here, we utilize the Capytaine code to compute the added
impulsive hydrodynamic mass tensor, the radiation-damping co-
efficient used to calculate the radiation retardation kernel, the
Froude-Krylov force, and the diffraction force for each shape of
the floating platform design [9, 16]. This code employs linear
potential flow wave theory and the boundary element method
(BEM) to provide the aforementioned hydrodynamic coefficients
in the frequency domain, based on the assumptions of incom-
pressible, inviscid, and irrotational flow. Within the optimization
loop, these hydrodynamic forcing terms are computed repeatedly
for each individual design point.

The calculation of the hydrostatic forces is performed over
a specified range of time, wave frequencies, and direction values
to provide a substantial amount of data for the motion analy-
sis. Wave height and period are determined and used to create a
statistical wave signal in the time domain using the JONSWAP
spectrum [17]. The resulting wave profile contains a wide range
of frequencies and amplitudes, making the incident wave loads
applied to the floating platform realistic. However, when this
method is used for commercial applications the simulation time
window needs to be long enough due to the stochastic nature of
the waves generated by the JONSWAP spectrum. Since this study
focuses mainly on the development of the methodologies as op-
posed to creating actual solutions for manufacturing, it should be
noted that the current formulation does not perform simulations
for such an extended time window.

2.2 Simulation of the floating body dynamics
Time-domain simulation of the floating platform motion re-

quires solving the state space equation, which is created to form an
ordinary differential equation (ODE). The state vector includes
both displacement and velocity components of all 6-DOF ele-
ments, given as:

𝚵 =
[︁
𝜉1, · · · , 𝜉6, �̇�1, · · · , �̇�6

]︁T
, (3)

where Ξ is the state vector representing the second-order ODE
represented in a system of first-order ODE form. Solving this
ODE involves the construction of system dynamics in the form
of derivative function, given as:

�̇� = f𝑑 (𝚵) , (4)

where f𝑑 is the derivative function that represents the system
dynamics. However, obtaining this function at each time step re-
quires a solution for the convolution integral, given in the second
term on the left-hand side of Eq. (1). This requires expensive
numerical integration. However, in this wave retardation term,
the wave effect would diminish over time and, as a result, it does
not affect the dynamic response if we truncate the convolution
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FIGURE 1: BASELINE FLOATING PLATFORM DESIGN

integral for past state trajectories beyond a certain amount of time
[18, 19]. Generally, the truncation should be performed after the
integration is performed for a sufficient amount of time, and an
additional study needs to be conducted to characterize the con-
volution integral kernel function to systematically identify the
amount of truncation time [20].

2.3 Floating platform design
A typical semi-submersible or tension leg platform (TLP)

design used for floating offshore wind turbines (FOWTs) serves
as our baseline floating platform design. The baseline design
consists of one center column, three outer columns, and three
pontoons that connect the outer columns to the center column.
The baseline design is depicted in Fig. 1.

The center column hosts the mounting point for the primary
energy-generating device (e.g., wind turbine tower), and the cen-
ter of gravity of the device is generally located far above the still
water line (SWL). We have considered this configuration in con-
structing our numerical model, placing a virtual mass at a high
position above the SWL.

Pontoons are instrumental in maintaining the distances be-
tween columns, thereby ensuring stability across three rotational
DOFs. However, while increased pontoon length offers enhanced
stability, it also becomes more susceptible to the influence of
hydrodynamic forces and affects the structural integrity of the
system. The columns and pontoons collectively act as a buoy for
the structure of the system. Yet, they are simultaneously subject
to a variety of hydrodynamic forces, originating from ocean cur-
rent and incident waves, along with the radiation and diffraction
effects of the floating platform.

This study aims to minimize the motion of the floating plat-
form under incident wave loadings by optimizing the shapes of
the outer columns. Considering the substantial influence of the
submerged structure’s shape on the hydrodynamic forces govern-
ing fluid-structure interactions and given that the outer columns
directly confront wave loadings, we focus on the optimization
of their shapes. This serves as our initial step toward a broader
objective of comprehensive free-form shape optimization of the
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FIGURE 2: VARIED (CIRCULAR AND IRREGULAR) CROSS-
SECTIONAL SHAPES OF THE OUTER COLUMN
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FIGURE 3: COMPUTATIONAL PANEL BOUNDARY ELEMENT
MESHES OF VARIED CROSS-SECTIONAL SHAPES OF THE OUTER
COLUMN

entire floating platform, a goal planned to extend beyond the
scope of this paper.

2.4 Design parameterization
In order to optimize the outer column design, we employ

a parameterization method that defines the outline of the cross-
sectional shape. This method involves using a spline curve with a
select number of control points, and then projecting the outermost
mesh nodes on this spline curve, as illustrated in Fig. 2.

Considering that waves can arrive from any direction, asym-
metric column designs will likely perform suboptimally. For
instance, while an asymmetric design might offer enhanced per-
formance for waves coming from a specific direction, it may fall
significantly short in effectiveness for waves coming from other
directions. Consequently, we impose a symmetric constraint in
our shape formulation, which effectively reduces the number of
design variables by half.

Additionally, the mesh nodes shared by both the outer column
and the pontoon should not be altered. Therefore, we do not
change the outline of the mesh nodes that are connected to the
pontoon. This constraint is reflected in Fig. 2, where seven marker
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points on the positive side in the 𝑥 direction are fixed at their
original locations.

The vector of design variables includes radii of independent
control points from the center of the baseline column, given as:

x = [𝑟1, 𝑟2, · · · , 𝑟𝑁 ]T , (5)

where x is the vector of design variables, 𝑟𝑖 is the radius of
𝑖-th control point, and 𝑁 is the number of independent control
points. As explained, due to the symmetric constraint and the
outline section shared with the pontoon, we use seven independent
control points in this study.

After the outline is defined, the cylindrical column mesh is
manipulated to conform to the curvature of the column outline
curvature. All inner mesh nodes are stretched (in either extend-
ing or contracting directions) in radial directions with respect to
the center of the column. This mesh handling technique offers
distinct advantages when sensitivity is evaluated by a gradient-
based optimizer using finite differencing. By maintaining mesh
connectivity and nodal positions in a continuous manner, we
can significantly reduce the likelihood of discontinuities in opti-
mization metrics, which include both the objective and constraint
functions.

The baseline design given in Fig. 1 has three cylindrical outer
columns with a circular cross-sectional shape. The outline profile
and the control points of this baseline design (Shape 1) are illus-
trated as a blue line with markers in Fig. 2, and the corresponding
computational mesh is partially shown in Fig. 3a. Two irreg-
ular shapes (Shape 2 and Shape 3) are additionally employed
to demonstrate the change in the outline of the cross-sectional
shapes of the outer columns. The outline profile and the con-
trol points of Shape 2 and Shape 3 are illustrated as orange and
green lines with markers in Fig. 2, respectively. The correspond-
ing computational meshes are partially shown in Fig. 3b and 3c,
respectively.

2.5 Optimization formulation
Here, the design optimization problem for the floating plat-

form is formulated as follow:

minimize:
x

𝐶scaling

𝑡𝑓 − 𝑡0

6∑︂
𝑘=1

(︃∫ 𝑡𝑓

𝑡0

�̈�
2
𝑘 d𝑡

)︃ 1
2

subject to: 𝐴outer-column (x) − 𝐴outer-column,0 = 0

subject to:
𝑡𝑓∑︂
𝑡0

(𝚵2)1/2 =

𝑡𝑓∑︂
𝑡0

(𝚵2
0)

1/2

where: �̇� − f𝑑 (𝚵, x) = 0,

(6)

where𝐶scaling is a scaling factor that ensures the objective function
is not affected by round-off errors, 𝑡0 and 𝑡𝑓 are the initial and final
times of the time-domain simulation, 𝐴outer-column is the cross-
sectional area of the outer column and is a function of x, and
𝐴outer-column,0 is the cross-sectional area of the outer column at
the baseline design (x = x0).

In this formulation, the objective function aims to minimize
the sum of time-averaged platform accelerations across all 6-
DOF directions. It is important to note that the acceleration

TABLE 1: ANALYSIS AND OPTIMIZATION CASES, INITIAL CONDI-
TIONS, AND SOLUTIONS

Initial condition Numerical solution

Shape and Objective Constraint
Case radius function violation

Analysis 1 Circular, 3.5 m 1.374377 0.000 × 100

(Baseline)
Analysis 2 Irregular #1 1.402011 1.564 × 100

Analysis 3 Irregular #2 1.473139 6.281 × 100

Optim 1 Circular, 3.5 m 1.316513 5.332 × 10−3

(Baseline)
Optim 2 Circular, 3.4 m 1.313484 2.194 × 10−4

Optim 3 Circular, 3.8 m 1.320251 2.499 × 10−4

Optim 4 Irregular #1 1.331540 2.549 × 10−4

values in each of the six DOFs have unique and significantly dif-
ferent scales. By summing the accelerations over these six DOFs,
the optimizer is naturally encouraged to prioritize the design op-
timization with regard to DOFs characterized by larger scales,
while still accounting for contributions from all directions. This
approach ensures a balanced and effective optimization process
that accounts for the varying impact of each DOF on the overall
performance of the floating platform.

An equality constraint is also imposed in this formulation to
ensure that the explored design maintains the same cross-sectional
area for the columns. This constraint effectively guarantees that
the buoyant force of the platform remains constant, preserving
the hydrostatic characteristics of the baseline platform design.

Lastly, the time-dependent dynamic simulation is performed
externally and independently of the optimizer. The simulation
model retrieves the current design under evaluation from the
optimizer and supplies the resulting time-dependent trajectories
of the state variables, 𝜉𝑘 and �̇�𝑘 for all 6-DOFs, where 𝑘 ∈
{1, 2, 3, 4, 5, 6}. The optimizer treats the simulation model as a
black-box function and does not handle the dynamic constraint
specified in the expression after “where” clause in Eq. (6).

Given that the problem outlined in Eq. (6) takes the form of
a nonlinear programming (NLP) problem, we employ the IPOPT
nonlinear optimizer [21] for its solution. At this early stage of
design exploration, we intentionally set the solver’s maximum
number of iterations to a small value (maxiter= 10). This ap-
proach facilitates the faster acquisition of approximate results,
enabling us to discern potential pathways toward enhanced solu-
tions without spending large computational expenses.

3. RESULTS AND DISCUSSION
We conducted analyses on three distinctive outline shapes of

the outer column designs, including cases with a circular shape
with a radius of 3.5 m (Analysis 1) and two arbitrarily-created
irregular shapes (Analysis 2 and 3). Furthermore, numerical
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TABLE 2: COMPUTATIONAL EXPENSES

Total time Number of Number of
Case elapsed iterations fn. evals

Analysis 1 3.09 min N/A 1
Analysis 2 3.02 min N/A 1
Analysis 3 3.05 min N/A 1

Optim 1 322.78 min 10 103
Optim 2 294.70 min 10 93
Optim 3 297.35 min 10 95
Optim 4 535.18 min 10 170
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FIGURE 4: OPTIMAL CROSS-SECTIONAL SHAPES OF THE OUTER
COLUMN

design optimizations were performed with four different initial
design points, beginning from circular shapes with three varying
radii values (Optim 1–3), and the irregular shape (Irregular #1)
utilized in the Analysis 2 case (Optim 4). The case definitions,
initial conditions, and numerical solutions are detailed in Tab. 1.
The two irregular shapes employed in the Analysis 2, 3, and
Optim 4 cases, in comparison to the baseline circular shape, are
previously defined in Figs. 2 and 3. Computational expenses in
terms of the solution time and the number of function evaluations
are given in Tab. 2. The computations were performed using dual
Intel Xeon Gold 6242R processors, and parallel computation was
extensively utilized in linear potential flow solutions throughout
the wide range of wave frequencies.

We note that the optimal solutions for all four cases exhibit
convergence towards similar objective function values. The ob-
jective function values of the four optimal solutions (Optim 1–4)
are 3.11–4.43% lower than the objective function value of the
baseline case (Analysis 1). Constraint violations in Tab. 1 are
calculated by: |︁|︁𝐴outer-column − 𝐴outer-column,0

|︁|︁ . (7)

FIGURE 5: OPTIMAL DESIGN COMPUTATIONAL PANEL BOUND-
ARY ELEMENT MESH OF THE OUTER COLUMN

Maximum constraint violation was observed from Optim 1 case,
which is 5.332× 10−3. However, this value is only 0.014% of the
baseline cross-section area, meaning that the constraint violation
is negligible for the solutions of all Optim 1–4 cases.

Figure 4 shows the optimal cross-sectional shapes of the
outer column for the Optim 1–4 cases, contrasting them with the
baseline design (Analysis 1). Although the objective function
values for all four cases are remarkably similar, optimal solutions
in terms of the cross-sectional shapes exhibit notably different
designs. However, it is evident that the optimal solutions tend
to converge toward concave shapes at the outermost location of
the platform. Generally, longer pontoons are more susceptible to
wave loadings, but they also offer improved hydrodynamic sta-
bilities at the same time. The underlying reasons behind these
optimal shapes warrant further investigation. Nontheless, consid-
ering the relatively smaller pitching DOF motion in comparison
to other two major DOFs due to the characteristics of the TLP,
one can hypothesize that the concave and wider outer column
shapes may effectively provide benefits similar to those offered
by a shorter pontoon design.

Given that the objective function values for all Optim 1–4
cases are similar, we opted to conduct a more thorough investi-
gation on the optimal design solution of the Optim 2 case. This
decision was driven by the relatively superior performance of the
Optim 2 design in terms of the objective function value, notwith-
standing the slight difference compared to the other Optim cases.
Figure 5 illustrates the panel BEM mesh pertaining to the opti-
mal design associated with the solution of the Optim 2 case. In
this preliminary exploratory study, we did not impose any con-
straints aside from the constant cross-sectional area stipulated in
Eq. (6). However, the optimal shape presented here possesses
an extremely sharp transition in the outline surface angle, which
could pose manufacturing challenges for the floating platform
structure. For future studies, additional constraints, such as the
maximum curvature of the surface, should be implemented to
circumvent the emergence of such extreme designs as optimal
solutions.
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FIGURE 6: DISPLACEMENT OF FLOATER DESIGNS
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FIGURE 7: ACCELERATION OF FLOATER DESIGNS
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FIGURE 8: TIME-AVERAGED AND NORMALIZED DISPLACEMENTS
FOR FLOATING BODY SURGE, HEAVE, AND PITCH DOFS

Figures 6 and 7 showcase the system displacement and ac-
celeration trajectories in the surge, heave, and pitch DOFs for the
Analysis 1, 2, 3 and the Optim 2 cases. When compared to the
baseline case (Analysis 1), the arbitrary irregular shapes utilized
in the Analysis 2 and 3 cases demonstrate higher amplitudes in
both displacement and acceleration trajectories across all DOFs.
However, the optimized solution provided by the Optim 2 case
exhibits notably reduced amplitudes in both displacement and
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FIGURE 9: TIME-AVERAGED AND NORMALIZED ACCELERATIONS
FOR FLOATING BODY SURGE, HEAVE, AND PITCH DOFS

acceleration trajectories for the heave DOF motion, albeit at the
expense of slight increase in the amplitudes of the pitch DOF
motion. This finding supports our previously proposed hypoth-
esis, suggesting that the concave and wider outer column shapes
might offer enhanced performance under wave loadings with a
small sacrifice in the stability due to a reduced effective span
footprint (similar to shorter pontoon length).

Figures 8 and 9 depict the time-averaged displacement and
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acceleration magnitudes within the surge, heave, and pitch DOFs
for the instances of Analysis 1, 2, 3 and the Optim 2 cases. The
bar graphs are normalized to the results of the baseline case.
Thus, the baseline case magnitudes are 1.0 for all DOFs. These
figures clearly displays the average magnitude relative to the base-
line case. Arbitrarily-created irregular shapes (Analysis 2 and 3)
exhibit inferior performances in all DOFs in terms of both dis-
placement and acceleration. However, Optim 2 result exhibit a
significantly reduced displacement and acceleration in the heave
DOF, with a slightly increased acceleration in the pitch DOF, as
we dicussed above.

The computational results presented here are evaluated solely
based on the incoming wave from negative to positive 𝑥 direction,
a strategy to maintain computational efficiency. Readers are di-
rected to Figs. 2 and 4 for a clear understanding of the direction of
the 𝑥 axis. However, for a more comprehensive representation of
real-world conditions, it is imperative to consider incoming waves
from all possible directions within the optimization loop. While
this would undoubtedly escalate the computational overhead in
terms of CPU hours, the employment of a parallel processing
framework would prevent any substantial increase in total com-
putational time. Consequently, future research must take into
account the arbitrary character of the incoming wave direction.

4. CONCLUSION
When formulating the floating platform design problem, the

key hypothesis was considered that the outer column of the float-
ing platform would exert the most significant influence on the
hydrodynamic interactions between the floating platform motion
and its surrounding environment. This supposition stemmed from
the fact that the outer columns, which provide the main buoyant
force and stability of the system, would be subjected to the pri-
mary forces imparted by the incoming waves. Consequently, the
optimization focus was directed towards the outer shape, as it
was believed that modifying this aspect would yield the most
substantial impact beyond the original design.

The optimal solutions obtained from Optim 1–4 cases sup-
port this key hypothesis. The solution proposes that the outer
column adopt a concave shape at the outermost location to mini-
mize acceleration in the heave direction, while tolerating a minor
increase in acceleration in the pitch direction. By this means,
the overall acceleration of the floating platform’s motion could
be substantially curtailed.

The findings advocate for an expanded scope of design ex-
ploration beyond the shape optimization of the outer column.
The logical next step would involve incorporating all submerged
structures into the design optimization process and permitting
comprehensive free-form shape optimization utilizing advanced
design parameterization techniques.
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