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ABSTRACT
This paper discusses a framework to design elements of the plant
and control systems for floating offshore wind turbines in an in-
tegrated manner using linear parameter-varying models. Mul-
tiple linearized models derived from aeroelastic simulation soft-
ware in different operating regions characterized by the incom-
ing wind speed are combined to construct an approximate low-
fidelity model of the system. The combined model is then used
to generate open-loop, optimal control trajectories as part of
a nested control co-design strategy that explores the system’s
power production and stability using the platform pitch tilt as a
proxy in the context of crucial plant and control design decisions.
The radial distance between the central and outer columns and
the diameter of the outer columns of the semisubmersible plat-
form are the plant design variables. The platform stability and
power production are studied for different plant design decisions.
The effect of plant decisions on subsequent power production
and stability response of the floating wind turbine is quantified
in terms of the levelized cost of energy. The results show that the
inner-loop constraints and the plant design decisions affect the
turbine’s power and, subsequently, the cost of the system.
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1 INTRODUCTION

The design of floating offshore wind turbines (FOWTs) has of-
ten followed a sequential pattern, where the physical plant pa-
rameters are designed first, and a controller is then developed for
a particular plant [1–4]. However, in FOWTs, there are strong
interactions between the structural and environmental dynamics
and the controller. Unfortunately, a sequential design process
can produce conservative designs because it does not account for
this coupling [5, 6]. Optimizing both the physical plant and the
controller simultaneously enables rapid identification of stable,
system-level optimal results. This integrated design approach
has been studied extensively under the term control co-design
(CCD) [1,7–11]. Recently, the importance of these integrated de-
sign approaches for energy system design has been recognized by
domain experts. References [5,12–15] have explored the applica-
tion of integrated design to offshore wind turbines. Integrated de-
sign approaches have also found applications in design of mixed
renewable/nonrenewable power generation systems [16, 17].
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FIGURE 1: Floating offshore wind turbine. Illustration courtesy
of NREL.

The primary design goal of any wind-based energy system
is to capture as much power from the incoming wind while min-
imizing the structure’s dynamic loads. However, the overarching
balance between increasing the annual energy production while
minimizing the systems’ building and operating costs is essen-
tial to producing economical energy solutions. These goals are
captured by the levelized cost of energy (LCOE) metric [18]:

LCOE =
Total Lifetime Cost

Total Lifetime Energy Output
(1)

The total lifetime costs of the FOWT system are a combina-
tion of the initial capital cost needed to build the system and
the operation and maintenance costs over its lifetime. The cap-
ital costs are often directly linked to some of the plant de-
sign decisions [19, 20]. The maintenance costs and the total
lifetime energy output are dependent on how the system op-
erates and, consequently, depend on the environment and how
it is controlled [21, 22]. Recent studies have shown that ad-
vanced control strategies for offshore wind applications can in-
crease the power extracted from the turbine and minimize the
levelized cost [23, 24]. Most conventional LCOE estimates have
not incorporated detailed dynamic assessments nor the impact of
novel control strategies. In the case of highly coupled, highly
constraint-sensitive systems, such as FOWTs, such considera-
tions are imperative because of the many challenges making
these systems economically viable [1]. Additionally, overlook-
ing the impacts of control decisions on optimal physical design
is one of the pitfalls of sequential design approaches.

1.1 Plant Design for Floating Offshore Wind Turbines
The plant design for a FOWT involves design decisions for sev-
eral individual subsystems with considerations of stability, cost,
and energy production. The primary elements of a FOWT are
the rotor, drivetrain, nacelle, tower, and support structure and are
labeled in Fig. 1. Stability of the FOWT about its natural equi-
librium is required in all manner of wind, wave, and current ex-
citations that the system might experience [25]. Reference [26]
provides information about the current standard industry require-
ments of an FOWT.

An increase in the power production capacity of an FOWT
increases turbine inertial and structural loads [13,27]. In addition
to this concern, the turbine must also withstand the forces and
motions induced by the stochastic offshore environment [28–30].
The design of the substructure is thus a critical aspect of FOWT
design. Different substructure designs have been proposed based
on ballast, buoyancy, and mooring stability concepts [31–33].
The focus of this study will be the semisubmersible platform
technology, which has been shown to have potential benefits over
other alternatives in terms of stability, transportation, and ease of
assembly [31,34]. In this study, the plant variables under consid-
eration are the distance between the central column and the outer
columns, also called column spacing (cs), and the diameter of the
outer columns (cd), as they directly affect the geometry and cost
of the platform:

xp =
[
cs cd

]T
(2)

Generally, increasing the size of the support structure will
make the FOWT more stable, but this would also raise the cap-
ital and other associated costs. Therefore, it is essential to opti-
mize the system for cost while ensuring stability [35]. The effect
of other variables, such as ballast volume and mooring param-
eters, could also be explored. As the development cycle pro-
gresses, additional practical considerations may also be incorpo-
rated into the plant design, like assembly costs and procedures,
maintenance costs, and ease of transportation.

1.2 Control Design for Floating Offshore Wind Tur-
bines

The control system for an FOWT is instrumental in achieving the
design goals stated in the previous sections. The power generated
by an FOWT and the physical loads on its structure are heavily
dependent on the loading conditions induced by the wind, waves,
and currents. Operating the system in such a way so that it can re-
main stable while producing maximal power is the primary goal
of the FOWT control system. Similar to the control of land-based
wind turbines, the control strategy selected depends heavily on
the system’s input excitations because these inputs produce the
dynamical responses we seek to optimize.

The primary mode of control for any wind turbine depends
heavily on the wind, so specific operating regions are often de-
fined based on the wind speed [36,37]. Typically, there are three
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FIGURE 2: Stationary operating points for IEA-15-MW turbine.

wind speed-based regions of interest, visualized in Fig. 2. At
lower, below-rated wind speeds, the goal is to use the genera-
tor torque to change the generator speed that tracks the optimum
power coefficient. In the above-rated wind speed (Reg. 3), the
turbine is designed to operate at its maximum power level. In
between these regions, there is a transition behavior, and, above
the cut-out wind speed, the system is shut down because there
can be permanent structural damage.

The two primary control inputs for wind turbines are the
pitch angle of the turbine blades (commonly called blade pitch)
and the torque produced by the generator. In below-rated wind
speeds, varying the generator torque is the primary mode of con-
trol of the turbine [12,38]. Above rated wind speeds, the genera-
tor torque is held constant and the blade pitch is varied to regulate
the generator speed and power to their rated values.

1.3 Modeling Considerations
It is often necessary to conduct early-stage design studies to un-
derstand the desired fundamental system properties and behav-
iors that inform critical decisions that need to be made as the
system of interest is realized. The use of high-fidelity model-
ing tools and methods in early-stage design studies is not always
needed to achieve the desired design insights and can be pro-
hibitive due to their complexity and computational expense [39].
In the context of optimization-based studies, depending on the
parameterization of the given turbine and platform model, the
resulting design space could be broad and complex [40, 41].

To facilitate these design and control (both closed- and open-
loop) studies, it is common to develop reduced or lower-order
models that capture just the system’s essential physics. Results
from these reduced-order models are validated against the results

from high-fidelity tools to understand their veracity in studying
the system’s behavior. In some cases, these models are then
linearized around predetermined set-point values in distinct op-
erating regions. These linearized models are then either used
to understand the system dynamics and design controllers in
these operating regions or to develop frequency domain mod-
els that enable faster model evaluation [5, 42–44]. Some recent
platform design studies have utilized these linearized models
and optimization-based approaches to identify the optimal de-
sign [5, 43, 44].

However, there are some challenges in developing these
lower-order models. For example, it can be complicated because
this process requires extensive subject knowledge of FOWTs
and the associated physics/engineering disciplines. Additionally,
the lower-order models are developed to study a specific aspect
of the system’s behavior (e.g., the floating structure response,
controller response, and aerodynamic wake). As such, the re-
sults from these models cannot be easily generalized to obtain
system-level insights. The highly coupled nature of an FOWT
can create further complications in modeling the system accu-
rately [5, 42, 45, 46].

One way to mitigate these challenges is by using lin-
earized models obtained directly from high-fidelity modeling
tools (e.g., computational fluid dynamics, blade element momen-
tum theory) [47, 48]. These models are obtained by linearizing
the nonlinear system around specific operating points, often sta-
tionary points where the system exhibits static behavior. A linear
time-invariant state-space dynamic model about the static oper-
ating point (ξo,uo) typically has the following form:

dξ∆(t)
dt

=Aoξ∆(t)+Bou∆(t) (3a)

y(t) =Coξ∆(t)+Dou∆(t)+go (3b)
where t is time, ξ∆(t) are the relative states related to the orig-
inal states ξ with ξ(t) = ξ∆(t)+ ξo, u∆(t) are the relative inputs
related to the original inputs u with u(t) = u∆(t)+uo, y(t) are
the outputs, and the matrices (Ao,Bo,Co,Do,go) are associated
with the linearization process.

A significant drawback with any kind of linearized model
is that its accuracy in capturing the system’s dynamic response
diminishes quickly as the system’s behavior moves away from
the initial operating point. Thus, it becomes difficult to work
with many diverse design load cases where the wind speed con-
tinuously varies. Some studies that have used linearized models
have leveraged them in gain scheduling approaches to account
for nonlinearities. However, this approach does not guarantee
stability and performance for all possible values of the wind
speed [49].

In this work, we will discuss the use of linear parameter-
varying (LPV) models to help overcome the drawbacks of dis-
tinct linear models [49, 50]. These LPV models show good ac-
curacy when capturing the original nonlinear dynamics and can
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be used to generate open-loop optimal control trajectories. LPV
models have also been used to investigate various closed-loop
control solutions for wind turbines [49, 51, 52]. However, these
studies have not explored the use of continuous LPV models to
approximate the nonlinear system response or its efficient appli-
cation in early-stage design studies with open-loop optimal con-
trol.

1.4 Integrated Design with Control Co-Design
CCD is an integrated design paradigm that enables simultaneous
design optimization of the plant and control systems [10,53–55].
The CCD approach provides a rigorous framework that can nat-
urally handle the coupling between the plant and control drivers
present in FOWTs. A common mathematically equivalent way
to decompose a CCD problem is with the nested formulation as
a bilevel optimization [53, 54]. The coordination approach de-
fines a first-level, outer-loop problem that optimizes the plant
design with information on the best possible performance from
the second-level, inner-loop problem that optimizes the dynam-
ics and control for a given plant design (and is sometimes called
the control subproblem). In other words, the outer loop gener-
ates candidate plant designs, denoted by x†p; this candidate is
then passed to the inner loop. The inner loop then produces an
optimal control solution, u, and system dynamic states, ξ, for
this candidate plant design.

There are certain advantages to using the nested CCD ap-
proach (many are discussed in [54]), especially for problems
where the inner loop is a linear-quadratic dynamic optimiza-
tion (LQDO) problem. LQDO problems are characterized by
quadratic objectives, linear dynamic systems, general linear con-
straints, and open-loop control [39, 54]. Such problems can be
solved efficiently and accurately using quadratic programming
methods [56]. Additionally, nested CCD is often necessary when
black-box models of the dynamics are used (as will be the case
in this work) [8, 57]. In this article, we demonstrate the use of
the nested CCD method in the design of FOWT with the primary
goal of minimizing the LCOE. Factors such as power genera-
tion and the dynamic stability of the system are incorporated as
inner-loop objectives and constraints, respectively.

1.5 Open-Loop vs. Closed-Loop Control
As is true in many domains, various closed-loop control strate-
gies have been used for wind turbine control. While these strate-
gies are providing many practical control solutions, their use in
early-stage design studies can limit exploration because a con-
trol architecture must be assumed, potentially limiting our under-
standing of various trade-offs that can inform better wind turbine
designs [58]. Since open-loop optimal control (OLOC) does not
assume a particular control architecture, it can help identify the
maximum achievable performance limits and provide critical in-
sights into the optimal system dynamics and controller behavior
in early-stage design studies [54].

In the study of many controlled dynamic systems, simulation
or shooting-based approaches have been used where a simulation
is performed given a controller (either of the closed-loop or open-
loop variety), and its result (e.g., power generated) is used to
assess the performance of the proposed control strategy. While
implementing a shooting approach is relatively straightforward,
there are several challenges when combined with OLOC, such
as various efficiency and convergence issues [59, 60]. Therefore,
we use the direct-transcription (DT) method to solve the OLOC
problem, which discretizes the states and controls, resulting in a
large, sparse optimization problem [7, 59, 60].

1.6 Use of OpenFAST and WEIS Models
Wind energy with integrated servo-control (WEIS) is an open-
source project that is developed by the National Renewable En-
ergy Laboratory (NREL) and partners that will allow users to per-
form CCD of FOWT systems [2, 61]. The WEIS toolbox is built
on OpenFAST [62], another open-source toolbox developed by
NREL, that generates a full-system dynamic response of FOWTs
under wind, wave, and current excitations. The OpenFAST tool
is built on independent modules that capture the important physi-
cal phenomena of the different FOWT subsystems and couplings
between them. There are different modules to capture the effects
of aerodynamics, hydrodynamics, servodynamics, and mooring
dynamics. A variety of plant design decisions can be explored
within these tools as well [2]. The Wind-Plant Integrated System
& Engineering Model (WISDEM®), also part of WEIS, is used
to compute the platform geometry, mass, and cost.

In this work, the dynamic models of FOWTs will be gener-
ated using the linearization capabilities of the WEIS/OpenFAST
tools, with the original nonlinear dynamics simulation capabili-
ties being used for validation of the results. A detailed discussion
regarding the linearization capabilities of OpenFAST and the en-
tire tool can be found in [47, 48, 61, 62]. Wind speed is used to
select the state and control operating points for this linearized
model.

The remainder of the paper is organized as follows: Sec-
tions 2 and 3 define LPV modeling theory and validate the spe-
cific LPV models used in this work, respectively. Section 4 for-
mulates the CCD problem using the LPV dynamic model. Sec-
tion 5 presents the results of several studies conducted to bet-
ter understand the impact of control and plant decisions on the
LCOE objective. Section 6 summarizes the results and provides
future steps for this work.

2 LINEAR PARAMETER-VARYING MODELS

As mentioned in Sec. 1.3, linearized models like the one de-
fined in Eq. (3) can accurately describe the system’s behavior for
small perturbations about the operating point from which they
were derived. For the design and optimization activities of an
FOWT system, it is essential to understand the system behav-
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ior over multiple input excitations. While there are additional
drivers for modeling variations, the primary one in wind energy
systems, including FOWTs, is the wind speed in the direction of
the turbine-blade system. Under different wind conditions, the
stationary operating points for the FOWT system vary greatly, as
do the matrices defining the dynamic model in Eq. (3). There-
fore, we will consider models dependent on this important pa-
rameter, which will be useful in OLOC CCD studies.

2.1 Linear Parameter-Varying Model Derivation
LPV models are a special case of linear time-varying (LTV) sys-
tems where the system matrices are continuous and are a function
of a set of parameters [50, 52]. Here, we will consider the single
parameter case where the parameter w indicates the current wind
speed value. Now consider the following nonlinear parameter-
dependent model Σ:

Σ =


dξ

dt
= f (ξ,u,w)

y = g(ξ,u,w)
(4)

Our goal is to linearize this model about the w-varying oper-
ating point functions (ξo(w),uo(w)) where stationary or steady-
state models characterize their values:

f (ξo(w),uo(w),w) = 0, ∀w ∈ [wmin,wmax] (5)
where wmin is the minimum parameter value considered, and
wmax is the maximum parameter value considered.

Now the relationship between the linearization states and the
original states depends on the parameter w:

ξ(t) = ξ∆(t)+ξo(w), u(t) = u∆(t)+uo(w) (6)
Assuming that w is time varying, the time derivative relationship
of the states is:

dξ

dt
=

dξ∆
dt
+

d
dt

ξo(w(t)) (7a)

=
dξ∆
dt
+
∂ξo

∂w
dw
dt

(7b)

Now we use the following notation for the derivatives of the
nonlinear model:

A(w)B Jf
ξ

(ξo(w),uo(w),w) , B(w)B Jf
u (ξo(w),uo(w),w)

C(w)B Jg
ξ

(ξo(w),uo(w),w) , D(w)B Jg
u (ξo(w),uo(w),w)

where Jf
x denotes the Jacobian of f with respect to x, and the

values of these functions are dependent on the operating points
and are denoted as:

f (w)B f (ξo(w),uo(w),w) , g(w)B g (ξo(w),uo(w),w)

With this derivative relationship in Eq. (7) and the notation
above, the nonlinear system Σ in Eq. (4) is linearized about
(ξo(w),uo(w)) yielding the following LPV system:

Σw =


dξ∆
dt
=���*

0
f (w)+A(w)ξ∆+B(w)u∆−

∂ξo(w)
∂w

dw
dt

y = g(w)+C(w)ξ∆+D(w)u∆
(9)

If only a single time-invariant value of the parameter de-
noted wo is considered, then we have the following system:

dξ∆
dt
=A(wo)ξ∆+B(wo)u∆−

∂ξo(wo)
∂w �

�
�7

0
dw
dt

(10a)

y = g(wo)+C(wo)ξ∆+D(wo)u∆ (10b)
which gives us:

Σo =


dξ∆
dt
=A(wo)ξ∆+B(wo)u∆

y = g(wo)+C(wo)ξ∆+D(wo)u∆
(11)

which is the same LTI system defined in Eq. (3) for a single op-
erating point characterized by the parameter wo.

2.2 Construction Using Multiple Linearized Models
The system Σw with continuous dependence on the parameter w
generally will not be directly available because linearized mod-
els are often realized through numerical methods for specific
operating points (i.e., Σo). Therefore, it may be necessary to
construct Σw from a finite strategic set of Σo models. To ac-
complish this goal, the matrix entries of Σw are determined by
element-wise matrix interpolation from a set of given denoted
Ω = {Σo1,Σo2, · · · ,Σon}, each created using the parameters val-
ues W = [w1,w2, · · · ,wn]. The selected interpolation scheme was
piecewise cubic Hermite interpolating polynomials. Derivatives
of the polynomial interpolating function are directly computed
when needed.

There are several properties to consider to ensure such an
interpolation scheme has a reasonable chance of meaningfully
capturing the nonlinear dynamics, including:

(P1) The structure of the states, inputs, and outputs are unchang-
ing for all considered Σo.

(P2) The sparsity patterns (nonzero entries in the system matri-
ces) are generally similar between analogous matrices.

(P3) The stationary condition in Eq. (5) holds for the given inter-
polation scheme and W (i.e., (ξo(w),uo(w))) can be found
through interpolation such that the condition holds.

(P4) The element-wise relationships between different matrices
can be reasonably interpolated using a selected W ; however,
this is hard to quantify because errors in these coefficients
might not result in large errors in the key outputs.

(P5) At various validation points not in W , the error between the
actual linearized system at wo and the interpolated system
Σw, quantified by the H∞ norm, is below a tolerance ϵ:

∥Go(s)−Gw(s)∥H∞ ≤ ϵ (12)
where Go(s) and Gw(s) are the transfer function matrices
for Σo and Σw, respectively. This error metric better captures
the input/output error between the interpolated and original
systems.

(P6) Time-domain simulations between the nonlinear Σ and LPV
Σw should be similar.
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At this time, the selection of W was informed by expert in-
tuition and figures such as Fig. 2 that characterize the different
regions of operation and their transition points. Future work will
consider automated sampling strategies that try to optimally sam-
ple points for constructing an accurate LPV using the condition
in Eq. (12).

3 LPV Model Validation for IEA-15 MW Turbine
The International Energy Agency (IEA) 15-MW offshore wind
turbine is a reference turbine model jointly developed by NREL
and Danish Technical University (DTU) [12, 63], visualized in
Fig. 1. The turbine is supported by a floating semisubmersible
platform and a chain catenary mooring system. The details of
the support structure are available in [64]. This is the system
under consideration in this work.

There are five states, namely the platform pitch Θp, the first
time derivative of platform pitch Θ̇p, the tower-top fore-aft dis-
placement δT , first time derivative of the tower-top fore-aft dis-
placement δ̇T , and the generator speedωg. The order of the states
is as follows:

ξ(t) =
[
Θ̇p Θp δ̇T δT ωg

]T
(13)

In the rest of this article, we restrict our focus to two key states,
namely the generator speed ωg and platform pitch Θp, but all are
included in the LPV models. In its current form, the model is
excited by wind inputs only; wave and current disturbances are
not considered. Correspondingly, the total inputs to the system
are the wind speed w, the generator torque τg, and the blade pitch
β:

u(t) =
[
τg β
]T

(14)
For the considered system, OpenFAST can provide accurate

simulations of the system’s nonlinear dynamics (i.e., the out-
puts of Σ). However, due to the concerns expressed in previ-
ous sections, an LPV model is considered a less computationally
expensive and structured alternative to these expensive simula-
tions. The natural choice for the parameter needed to construct
the LPV model Σw is the wind speed. The operating region of
a wind turbine is between the cut-in wind speed (wmin = 3 [m/s]
in this study) and the cut-out wind speed (wmax = 25 [m/s]). To
understand the accuracy of the LPV modeling approach for this
system, several validation studies were carried out.

3.1 State-Space Model Comparisons
With a selected W (23 distinct wind speeds), the set of linearized
state-space models Σo at each of the wind speed values are ob-
tained. To construct the continuous Σw using W and Σo, direct
element-wise interpolation of the matrices (Ao,Bo,Co,Do) was
used. To reduce the interpolation costs, matrix sparsity patterns
were considered. Only entries with nonzero values were interpo-
lated (and the sparsity pattern remained similar (P2)).

To understand the predictive accuracy of this approach and

check if these models satisfy (P4), the following test is carried
out. Every alternate point in W was chosen as training data for
the interpolation procedure, and the values in between were se-
lected as validation points. This allows us to assess if the inter-
polation approach can predict matrix properties by comparing to
the validation systems1. In Fig. 3a, several key ξo(w) and uo(w)
values are shown, and there is good agreement between the inter-
polated LPV system and the validation points, even in the tran-
sition region. In Fig. 3b, one of the eigenvalues of A(w) that
changes with the wind is shown. Again, the eigenvalues gener-
ally are well predicted, with the largest errors in the transition re-
gion. Finally, the normalized nonzero entries of B(w) are shown
in Fig. 3c. There are some validation points with high errors in
the transition region but good agreement in the other regions.

3.2 Frequency-Domain Verification
The transfer function matrix of the interpolated linear models
was studied to understand better if the input/output relationship
is accurately predicted and compute the error in Eq. (12) in (P5).
Here, we consider the four relationships between the two key
states (ωg andΘp) and the inputs u. The results for the input/out-
put combination with the highest error (ωg and β) are shown in
Fig. 4.

The H∞ norm error between the training and validation sys-
tems and the interpolated systems is shown in Fig. 4a. The errors
at the training points are near zero, as expected using interpola-
tion. However, the systems derived from the transition region (8–
12 [m/s]) have the highest error compared to the other regions.
This figure shows how advanced sampling strategies could be
used to better sample from regions of high error. Additionally,
the transfer functions between β and ωg are shown in Figs. 4b
and 4c with a close prediction and largest H∞ error, respectively.

3.3 Time-Domain Verification
The final comparisons were based on (P6) using OpenFAST to
determine the nonlinear response of Σ. Using the same input tra-
jectory, three different models (Σ, Σw, and Σo using the average
wind speed wavg) are simulated, then the resulting state trajecto-
ries are compared. A step-like wind input is considered for this
study and is shown in Fig. 5a (and the nonzero trajectories for τg
and β are not shown).

From the results, we see that Σw captures the nonlinear re-
sponse from OpenFAST more accurately that Σo using wavg. For
this study, wavg = 12.8 [m/s]. Early in the simulation, when the
wind speed value is significantly different from wavg, we see that
the Σo using wavg produces inaccurate results for Θp in Fig. 5b
and ωg in Fig. 5c.

Using all the different comparisons, it was concluded that
the LPV model Σw can, with reasonable accuracy, capture the
dynamics of the considered FOWT.

1All points in W are used in the studies in Sec. 5.
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(a) Select stationary operating point values. (b) One eigenvalue of A(w). (c) Interpolated matrix entries of B(w).

FIGURE 3: Select stationary points, eigenvalues, and input matrix entries for Σw for the IEA 15-MW wind turbine.

(a) H∞ error using validation points. (b) Close prediction at w = 22 [m/s] between
blade pitch and generator speed.

(c) Largest H∞ error at w = 12 [m/s] between
blade pitch and generator speed.

FIGURE 4: Transfer function-based comparisons using the validation wind speed values for the IEA 15-MW wind turbine.

(a) Wind speed. (b) Platform pitch. (c) Generator speed.

FIGURE 5: Model validation simulations between nonlinear Σ, LPV Σw, and LTI Σo, using wavg models.

3.4 Interpolation Based on Plant Variables

The model Σw just presented was obtained using a particular in-
stance of the system’s plant design, denoted by xp in Eq. (2).
However, we also want to consider the design impacts of the

plant variables over the full range of their allowable values. For
such an investigation, a complete set of linear models Σw, corre-
sponding to multiple plant designs, are obtained. Because only
two plant variables are considered in the study, a full-factorial
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(a) One eigenvalue of A(cd). (b) Select stationary operating point
values.

(c) One eigenvalue of A(cs). (d) Select stationary operating point
values.

FIGURE 6: Interpolation of select stationary points and eigenvalues for Σo with w = 12 [m/s] based on xp.

grid was constructed. A regular-grid interpolation scheme is then
used to interpolate the individual elements of Σw over the entire
range of the plant variables. From (P2) the sparsity informa-
tion can be used to construct the interpolation scheme for the
nonzero elements in the linear system matrices, making the pro-
cess more efficient. The samples were generated between bounds
Lp = [36,6]T [m] and Up = [78,24]T [m] considered for cs and
cd dimensions, respectively. The column spacing dimension was
sampled for ncs = 7 different values, while the column diame-
ter was sampled at ncd = 7 different values, yielding a total of
n = 49 samples. The nominal platform specifications are avail-
able at [64].

Similar tests to those outlined in Secs. 3.1-3.2 were carried
out to check the predictive accuracy of the interpolation scheme
based on xp. For the state-space model comparison, the interpo-
lation scheme was set up for the linear models with the highest
H∞ error from Fig. 4c at w = 12 [m/s]. The corresponding state
matrix A(12) and key states and control operating points from
{ξo(12),uo(12)} were interpolated individually for both column
spacing (cs) and column diameter (cd) dimensions as shown in
Fig. 6. The frequency domain validation outlined for interpola-
tion based on W was carried out for interpolation based on xp.
The H∞ norm error for 25 different plant variable samples was
evaluated between the interpolated and actual models at w = 12
[m/s], and the average error was found to be ∼ 10−5 [dB] for all
25 samples. Therefore, we conclude that interpolation based on
xp is generally well-behaved, potentially more so than the wind
speed dimension. Since the H∞ error was so low, these results
are not shown graphically.

4 CONTROL CO-DESIGN PROBLEM FORMULATION

This section describes the nested CCD problem constructed us-
ing the LPV models from Sec. 2 to study the impact of vari-
ous stability constraints on the LCOE for the considered single-
device FOWT.

4.1 Outer-Loop Plant Design Problem Formulation

The outer-loop plant optimization problem in the nested CCD ap-
proach employed here is centered around the LCOE calculation
in Eq. (1). In this calculation, the total lifetime cost is estimated
as:

Ccapital(xp) =Cturbine(xp)+Cbos(xp) (15a)
Cn = rfcCcapital(xp)+Copex (15b)

where Cturbine(xp) and Cbos(xp) are the turbine cost and the bal-
ance of system cost for the turbine that depends on the plant de-
sign. Copex is the annual operating costs, and rfc is the fixed
charge rate, which, as used in this study, captures the amorti-
zation of Ccapital in Eq. (15a) across the project lifetime. More
details about rfc can be found in [65,66]. For this study, we used
the cost and scaling models and LCOE equation discussed in de-
tail in [67–72].

The total energy generated in a year is determined as:

E = AEP =
∫
Wo

P̄∗(w(t,Wo),xp)fW̃o
(Wo)dWo (16)

where Wo is the entire operating region, w(·) is a given load
case with an average wind speed of Wo, P̄∗(·) is the average
power produced for a given plant design and design load case
(DLC), and fW̃o

is the Weibull probability density function that
describes the wind speed distribution. Eleven wind profiles
from the IEA-specified DLCs with the normal turbulence model
in [73] (i.e., ‘DLC 1.1’) with average wind speed values between
3 and 25 [m/s] are used to approximate the distribution fW̃o

.
Finally, the annual energy production (AEP) is calculated as:

En = (1− fwl)E (17)
where 0≤ fwl ≤ 1 is the wake loss factor. Both Cn and En are nor-
malized with respect to the machine rating, which is 15 [MW].
This operation does not change the value of the LCOE, but it
changes the units of Cn to [$/MW] and En to [h]. Therefore,
LCOE = Cn/En, and the complete outer-loop optimization prob-
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lem is:
min
xp

LCOE(xp) (18a)

subject to: Lp ≤ xp ≤Up (18b)
where only simple upper and lower bounds on the plant vari-
ables are considered at this time (although more complex plant-
only constraints can be readily incorporated). Note that for a
fixed plant x†p, the solution for each P̄∗(x†p,w) can be deter-
mined through independent minimization problems. Therefore,
the control subproblems can be solved in parallel.

4.2 Control Subproblem for a Specific Design Load
Case

The control subproblem’s goal is to understand the impact of the
control decisions on system response, power production, and ul-
timately the LCOE design objective. An open-loop optimal con-
trol problem is constructed to maximize the power produced for
a given operational scenario or DLC. The optimization formula-
tion is presented using the original notation for states and con-
trols (ξ,u), but the linear time-varying transformation in Eq. (6)
based on the wind-dependent operating point is applied so that
(ξ∆,u∆) are the states and controls for this subproblem.

The energy produced by the turbine is:∫ t f

0
P(t)dt =

∫ t f

0
ηgτg(t)ωg(t)dt (19)

where ηg is the generator efficiency. Note, the control term τg
appears linearly in the objective term Eq. (19). The presence of
linear control terms in the objective function with linear dynam-
ics can give rise to singular arcs [59] as the control trajectory
cannot be uniquely determined. To help mitigate this issue, a
quadratic penalty term is introduced in the objective term:

Πc(t) = uT
[
10−16 0

0 10

]
u (20)

where values in this penalty matrix were identified according to
the method discussed in [74]. In addition to this, a penalty is
added to limit the fluctuation of the platform pitch:

Πp(t) = Θ2
p (21)

The linear dynamic constraints included using Σw from
Eq. (9) with plant dependence are:

dξ∆
dt
=A(xp,w)ξ∆+B(xp,w)u∆−

∂ξo(xp,w)
∂w

dw
dt

(22)

and the initial state values correspond to the state operating
points for w(0):

ξ(0) = ξo(w(0)), or equivalently ξ∆(0) = 0 (23)
To protect the generator components from excess electrical

loads and the nacelle from the dynamic loads, an upper bound for
generator speed ωg is set restricting the speed to the rated speed

TABLE 1: CCD study parameters.

Variable Value Units
ωg,max,1 0.7850 [rad/s]
ωg,max,2 0.9424 [rad/s]
Θp,max 6 [deg]
τg,max 19.8 [MNm]
Fs,max 5000 [kN]
Ms,max 32000 [kNm]
βmax 0.3948 [rad]

rfc 0.056 -
fwl 0.15 -

of the turbine:
0 ≤ ωg(t) ≤ ωg,max (24)

As a proxy for the stability and safety of the FOWT system, an
upper bound on the platform pitch tilt Θp is included:

Θp(t) ≤ Θp,max (25)
Maximum and minimum value constraints are placed on the con-
trols blade pitch β and the generator torque τg, according to the
values prescribed in [12]:

0 ≤ τg(t) ≤ τg,max (26a)
0 ≤ β(t) ≤ βmax (26b)

Using the model for outputs from Eq. (9), we include addi-
tional output constraints on tower base fore-aft shear force and
tower base side-to-side moment, respectively:

Fs ≤ Fs,max (27a)
Ms ≤ Ms,max (27b)

The complete control subproblem formulation is presented
in Problem (28), and solved with weight k = 10−8 to normalize
the objective function value to be approximately unity magni-
tude:

min
u∆,ξ∆

∫ t f

0

(
−kP(t)+Πc(t)+Πp(t)

)
dt (28a)

subject to: Eqs. (22)− (27) (28b)

which will yield the average power P̄∗ =
(∫ t f

0 P(t)dt
)
/t f needed in

Eq. (16). It can be observed that Problem (28) has only quadratic
objective function terms and linear constraints; therefore, it can
be classified as a LQDO problem (see Sec. 1.4).

5 RESULTS

In this section, we describe the results of an LCOE-focused CCD
study using the IEA 15-MW wind turbine [12] supported by a
floating semisubmersible platform [64]. The values for the CCD
problem parameters defined in Sec. 4.2 are given in Table 1.
Here, we consider the following 11 wind load cases based on
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(a) Weibull PDF with k = 2 and λ = 11.28. (b) Cases {1,3,5,7,9,11}. (c) Cases {2,4,6,8,10}.

FIGURE 7: Input wind profiles from DLC 1.1. based on the average wind speed for the trajectory.

the average input wind speed shown in Fig. 7. Extrapolation is
used to find the values of the LPV model Σw outside the 3–25
m/s range, because the models are readily predictable in these
regions.

The LQDO problems of the form in Problem (28) are solved
using DTQP, an open-source MATLAB-based toolbox using the
DT method and quadratic programming [9, 75]. Each problem
was discretized using 2,500 equidistant mesh points, with an ob-
served relative objective function error bound of approximately
10−4.

A sensitivity approach was used to explore how the plant
design decisions impact the system’s cost and performance. Al-
though a hybrid-optimization scheme could be used to identify
the single optimal design as shown in [54], a sensitivity study
was utilized to better understand the different trade-offs. To un-
derstand the impact of plant variables on the system stability,
power production, and, subsequently, the LCOE, several con-
straint bounds on the platform pitch tilt Θp were explored. More
specifically, an exhaustive sensitivity study was conducted where
Θp was constrained to five different values between 3◦ and 7◦. A
60×60 grid was used to sample the plant design space. Although
no wave/current forces are included as disturbances at this time,
these different constraint values on Θp will roughly indicate per-
formance in more dynamic wave and current conditions.

5.1 Notes on the Computational Time
A desktop workstation with an AMD 3970X CPU, 128-GB
DDR4 2,666-MHz RAM, Matlab 2021b update 2, and Windows
10 build 17763.1790 was used to obtain all the linear models and
perform the different CCD studies. The linear models were ob-
tained using the WEIS toolkit available at [61]. Approximately
90 hours are required to obtain the complete set of linear models
discussed in Sec. 3.4, the most computationally expensive op-
eration in this study. Once the linear models corresponding to
the full-factorial scheme are available, 0.8 seconds are required

to construct and evaluate the surrogate model. The average so-
lution time for constructing and solving a single inner-loop sub-
problem shown in Eq. (28) is 0.74 seconds, which includes de-
termining physically accurate trajectories with respect to the lin-
ear model. The average time for solving the different subprob-
lems for all 11 load cases shown in Fig. 7 in parallel is 8.2 sec-
onds. The computational cost to obtain the results for a single
value of Θp,max was, on average, 8.2 hours. Overall, there were
3,600×11×5 = 198,000 inner-loop control subproblems solved
for different values of plant variables xp, wind case, and Θp,max.

All the studies discussed in this paper are formulated and
solved using Matlab. However, the code to run the inner-loop
studies using the LPV models is also available in Python and is
published as part of the WEIS tool [61]. The code for inner-loop
studies mentioned in the previous sections is available in Matlab
at [75].

5.2 Results for a Single-Control Subproblem
Figure 8 summarizes the optimal control results for one of the
198,000 problems with nominal plant dimensions (xp,nominal =

[51.75,12.50]), load case 7, maximum generator speed value of
ωg,max,1 = 0.7850 [rad/s], and Θp ≤ 4◦. The optimal trajectories
for the generator speed and platform pitch are shown in Fig. 8a.
We see that the constraint Θp ≤ 4◦ and others in Table 1 are sat-
isfied. Load case 7 is in the rated region, so we might expect the
blade pitch to be the primary mode of control and the generator
torque to be held roughly constant [36]. As shown in Fig. 8b,
these trends are reflected in the optimal control results. In addi-
tion to these, from Fig. 8c, we see that the constraints placed on
the tower base fore-aft shear force in Eq. (27) are satisfied. The
constraint placed on the tower base side-to-side moment is also
satisfied, but it is not shown. To satisfy the platform pitch con-
straints, we see that the generator speed does need to decrease
when the pitch constraint becomes active. Consequently, from
Figs. 8a and 8c, we can see how the generator power is affected
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(a) Select states ωg and Θp. (b) Controls β and τg. (c) Select outputs Power τgωg and Fs.

FIGURE 8: Optimal control results with nominal plant dimension xp,nominal, case 7, ωg,max,1 ,and Θp ≤ 4◦.

(a) Wind speed vs. generator power. (b) Wind speed vs. β. (c) Wind speed vs. τg. (d) Wind speed vs. ωs.

FIGURE 9: Select optimal control results using the LPV model vs. operating point schedule with xp,nominal, ωg,max,2, and Θp ≤ 6◦.

by the pitch constraint because it is a function of the generator
speed.

To better understand the optimal control results in other op-
erating regions, Fig. 9 was constructed to show the behavior of
a system with nominal plant values xp,nominal and the pitch con-
straint Θp ≤ 6◦. The constraint ωg,max,1 was relaxed by 20% to
be ωg,max,2 = 0.9424 [rad/s] to explore solutions that can gen-
erate more power while satisfying the constraints. In Figs. 9b
and 9c, the results generally follow the expected trends when
compared to the operating point schedule from Fig. 2. Over-
all, the optimization-based approach seems to favor larger torque
and generator speed values to maximize power production. As
a consequence of relaxing the maximum generator speed from
ωg,max,1 to ωg,max,2, we see that the optimizer favors lower blade
pitch values in the rated region. The results from the load cases
in the below-rated and transition regions are encouraging, as a
combination of torque and pitch control is utilized. In some re-
gions, the pitch control is active, while torque is held constant
and vice versa. Therefore, the optimizer identifies results for
all regions in agreement with traditional wind turbine controls.
Overall, these results, in combination with the model validation
in Sec. 3, demonstrate the validity of the considered LPV models
in FOWT open-loop control studies.

5.3 Average Output Power vs. Plant Design Space

In Fig. 10, the trends between the average power P̄∗(xp) for load
case 7 are shown for three of the five tested values ofΘp,max. The
primary method used to control the platform pitch is the blade
pitch β, but β is also tightly coupled to the generator speed. To
satisfy smaller, more challenging values of Θp,max, the optimal
control solution has higher values of blade pitch, sacrificing gen-
erator speed. Thus, for these more challenging constraint values,
the power produced is lower on average. Additionally, the plat-
form design has a significant effect on the average power produc-
tion. Larger values of column spacing cs and column diameter cd
yield platforms that satisfy the pitch constraints with little to no
compromise on power generation. In comparison, designs with
smaller values of cs and cd must sacrifice power generation in
some regions. In addition to these trends for the average output
power, we briefly looked at how, for the same DLC, the opti-
mal trajectories of τg and β change with xp. The mean value
of τg does not change as xp changes, as the optimizer seeks to
maximize the power generated. This trend holds for all three
windspeed regions. However, for the same DLC, the mean value
of β is higher for designs with lower values of cs and cd. The
mean value is disproportionately higher in the transition region
as a higher control effort is needed to satisfy the constraint on Θp
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(a) Θp ≤ 3 [deg]. (b) Θp ≤ 5 [deg]. (c) Θp ≤ 6 [deg].

FIGURE 10: Average power for case 7 with a mean wind speed of 14 [m/s] vs. plant design space for different platform pitch (Θp)
values.

(a) Θp ≤ 3 [deg]. (b) Θp ≤ 5 [deg]. (c) Θp ≤ 6 [deg].

FIGURE 11: AEP vs. plant design space for different platform pitch (Θp) values.

(a) Θp ≤ 3 [deg]. (b) Θp ≤ 5 [deg]. (c) Θp ≤ 6 [deg].

FIGURE 12: LCOE vs. plant design space for different platform pitch (Θp) values.
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FIGURE 13: Capital cost vs. plant design space.

for these designs.
For some combination of platform pitch constraints and

plant design considered in this study, the inner-loop optimizer
returns an infeasible result. These infeasible cases happen pri-
marily for designs with lower values of cs and cd and load cases
in the transition region, because the system tends to have higher
values of platform pitch in this region. In addition to the cases
from the transition region, some load cases in the rated region
fail for these plant designs. For these cases that fail in the rated
region, the upper limit on the control blade pitch considered in
these studies is insufficient for the optimizer to find feasible so-
lutions.

5.4 LCOE vs. Plant Design Space
Combining the average power produced for each load case using
the scheme in Eq. (16), we can determine the total energy output.
In addition, utilizing the total cost model mentioned in Sec. 4.1,
the system LCOE can be estimated. As mentioned previously,
some values of the constraints are infeasible, and the infeasible
results are included with zero generated energy. The summarized
LCOE and AEP results are shown in Figs. 11 and 12, respec-
tively. The Weibull distribution used in the AEP calculation in
Eq. (16) (and shown in Fig. 7a) weights the power produced by
the wind cases in the below-rated and transition regions higher
than the power produced in the rated region. Therefore, the tran-
sition region will be critical to reducing LCOE, and designs with
fewer infeasible cases here would be strongly preferred.

From these results, we see that the optimal value for
LCOE depends on the platform pitch constraint. The capital
cost increases monotonically as xp increases, with a minimum
cost of 4,740.7 [$/kW] at Lp = [36,6]T , and a maximum of
5,407.2 [$/kW] at Up = [78,24]T , as shown in Fig. 13. Simi-
larly, the AEP increases as xp increases.

For the IEA 15-MW reference turbine described in [12, 64],
Θp was constrained to 6◦ using the nominal platform dimensions.
From Fig. 12c, we see there is a region that balances the capital
cost and power production and, consequently, has lower LCOE

values. While keeping the other plant parameters constant, the
design with the lowest LCOE of 86.27 [$/MWh] can be obtained
using a platform with xp,opt,6◦ = [36.0,20.9]T . Additionally, the
lowest LCOE values across all constraints can be found in the
neighborhood of this point. For comparison, the LCOE value
for the nominal platform with dimensions xp,nominal,6◦ evaluated
using this approach is 89.30 [$/MWh].

To explore the sensitivity of the optimization result to vari-
ations in the cost model, we consider a variability of ±20% of
the capital cost for both cs and cd. Assuming the capital costs of
cs and cd are independent, the capital cost from Eq. (15a) can be
represented as:

Ccapital(xp) =Cs(cs)+Cd(cd) (29)
The variations in the cost can be represented through a scaling
factor F as: The variations in the cost can be represented through
a scaling factor F as:

Ccapital(xp) = F T
[
Cs(cs)
Cd(cd)

]T
(30)

with F = [1,1]T for Eq. (29). Figure 14 shows how the LCOE
subspace varies at the four extremities of this uncertainty set. The
optimal LCOE values for these four cases are:

1. LCOE = 84.79 [$/MWh] at xp = [36.0,23.6]T for F =
[0.8,0.8]T , shown in Fig. 14a.

2. LCOE = 86.53 [$/MWh] at xp = [37.4,23.3]T for F =
[1.2,0.8]T , shown in Fig. 14b.

3. LCOE = 85.97 [$/MWh] at xp = [36.0,20.9]T for F =
[0.8,1.2]T , shown in Fig. 14c.

4. LCOE = 87.71 [$/MWh] at xp = [37.4,20.9]T for F =
[1.2,1.2]T , shown in Fig. 14d.

Since the AEP does not vary with the cost model, the optimal
point is still in the neighborhood of xp,opt,6◦ , shown in Fig. 12c,
as this is the region with maximum AEP and minimum cost. Be-
cause of this, the optimal value of cs does not change much.
However, the optimal design is more sensitive towards changes
in the capital cost associated with cd. By reducing the cost of cd,
the optimum design has a higher value of cd as shown in Figs. 14a
and 14b.

The results presented in this study are subject to modeling
assumptions, optimal control operation, and lack of safety fac-
tors, but it can still help guide the final design. Additionally, the
hydrodynamic and hydrostatic stability of the different platforms
have not been evaluated in this study, along with other DLCs that
are meant to test the turbine under fatigue and extreme loading
conditions. These investigations will also limit the bounds on the
plant design variables and impact the final design.

6 CONCLUSION
In this work, we discussed the use of LPV models for CCD of
FOWTs. High-fidelity models of FOWTs are described by highly
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(a) F = [0.8,0.8]T . (b) F = [1.2,0.8]T . (c) F = [0.8,1.2]T . (d) F = [1.2,1.2]T .

FIGURE 14: LCOE vs. plant design space for Θp ≤ 6 for four different values of the capital cost scaling factor F .

complex and nonlinear models. Unfortunately, these models are
often too costly to use in early-stage system design and evalua-
tion. Using linearized models based on these nonlinear systems
is a popular method to offset the computational costs. Here, we
describe a class of LPV models that realize more accurate pre-
dictions of a system’s dynamic behavior over a large range of
operating points and are shown to be useful for early-stage CCD
studies of FOWTs.

The specific FOWT system considered was the IEA 15-MW
reference turbine [12] on a semisubmersible platform [64]. The
LPV models based on the wind speed parameter showed good
general agreement in both nonlinear simulation comparisons and
general optimal control trends. The primary study investigated
the system’s pitching motion as a proxy of its dynamic stabil-
ity, power production, and, ultimately, the LCOE. The plant de-
cisions in this study were the distance between the central and
outer columns of the platform, along with the diameter of the
outer columns, and the results indicated that a system with lower
column spacing and higher column diameter values has optimal
LCOE values. The optimal platform design obtained through
the proposed approach can satisfy the platform pitch constraints
while providing a lower LCOE value. However, several addi-
tional factors should be investigated before making a specific
recommendation.

It remains to future work to incorporate more detailed and
sophisticated outer-loop plant design optimization, including the
impact of plant decisions, such as tower hub height, blade length,
and the mooring system on the platform stability, and power pro-
duction in the context of the LCOE. More scalable and efficient
strategies for sampling and interpolation must be explored to sup-
port the expanded plant model. Leveraging the LPV model struc-
ture for uncertainty propagation in the time domain would sup-
port future CCD studies that directly incorporate uncertainties
and reliability constraints. The performance and trade-offs of
the LPV approach presented in this article should be compared
with approaches for nonlinear derivative function surrogate mod-

els [57]. Additionally, we hope to study the effect of wave and
current excitations. Finally, to address the realizability of the
open-loop optimal control solutions, work is needed to realize
robust, implementable control systems, which may be informed
by the optimal operation identified in this study [2, 58].
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