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1. Abstract
Surface textures reduce friction in lubricated sliding contact. This behavior can be modeled using the Reynolds

equation, a single partial differential equation (PDE) that relates the hydrodynamic pressure to the gap height. In a
previous study, a free-form texture design optimization problem was solved based on this model and two compet-
ing design objectives. A pseudo-spectral method was used for PDE solution, which was treated as a black box in
the optimization problem. This optimization implementation did not exploit model structure to improve numerical
efficiency, so design representation fidelity was limited. Here a new strategy is introduced where design repre-
sentation resolution and computational efficiency are improved simultaneously. This is achieved by introducing a
new optimization variable involving both pressure gradient and the cube of gap height at each mesh node location,
and simultaneously solving the flow and texture design problems. This transformation supports linearization of
the governing equations and design objectives. Sequential Linear Programming (SLP) is used with the epsilon-
constraint method to generate Pareto-optimal texture designs with high resolution and low computational expense.
An adaptive trust region is used, based on solution improvement, to manage linearization error. Comparing to the
non-linear programming implementation, the solution converged to a set of slightly suboptimal points (maximum
25% objective function degradation when normalized apparent viscosity is 0.5, and moderately better when nor-
malized apparent viscosity is 0.2), but results in significant improvement in computational speed (8.4 times faster).
2. Keywords: Multi-objective optimization, Linearization, Shape optimization, Reynolds equation

3. Introduction
Surface textures reduce friction in lubricated sliding contact [1]. In many practical engineering applications

with lubricated sliding contact, reducing energy loss, wear, friction-induced noise, and improving compactness are
important design objectives [2, 3]. Since the roughness of a sliding surface primarily affects friction performance,
a comprehensive set of studies has been conducted to understand how changes in surface roughness can reduce
friction. Many existing studies focus on creating an array of dimples with circular or other shapes. It has been
demonstrated that circular micro dimples fabricated using abrasive jet machining and laser beam machining with
different sizes can help reduce lubrication friction [4]. A theoretical model of micro-dimple hydrodynamics has
been introduced, and has been verified experimentally showing that surface micro structures enhance frictional
performance [1]. Previous studies have not been limited to only circular dimple shapes. More recent studies
show that other specific surface texture top profile shapes can further improve frictional and load-carrying perfor-
mance [5–7], while other studies also investigated the effect of depth profile changes as well [8, 9]. A series of
recent studies tried to further enhance the frictional performance and load-carrying capacity by expanding the sur-
face texture to free-form design of the full interface surface, and led to improvement of both objectives by an order
of magnitude [2, 10]. These studies involved a reduced-dimension texture design parameterization as a strategy
to improve computational efficiency for optimization studies, at the expense of reduced texture design resolution.
The optimization studies were based on a Reynolds equation model, which is the simplest option for predicting
frictional performance of lubricated sliding contacts. Several earlier numerical studies have been performed using
the Reynolds equation to examine the effects of surface textures on friction reduction [11–13]. However, solving
a fluid flow requires a computationally expensive solution of a nonlinear system of equations (even when based
on a simplified governing equation, such as the Reynolds equation). Here a more efficient method for solving the
texture optimization problem for lubricated sliding contact is proposed by linearizing the Reynolds equation, and
sequentially updating the approximated linearization.

4. Problem Formulation
4.1. Problem Statement

Using a rotational tribo-rheometer setup given in Fig. 1, we are designing a two-dimensional texture profile
for the fixed bottom plate. The nominal gap height between the top and bottom plates is fixed, and the torque
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and normal force on the moving flat surface is measured [9]. The goal of this study is to decrease friction within
the system while simultaneously increasing the normal force produced by the surface texture. Recent studies
demonstrated that these two objectives could be achieved with asymmetric depth profile surface textures [2,9,14].
In this study, we optimize the height profile of the surface texture using a computationally efficient linearization
technique applied to the Reynolds equation. The design variable (gap height) has the same dimensions as the
computational mesh, i.e., we are designing the gap height at each mesh point. Figure 1a shows the front view of
the experiment setup of this study. Two disks are separated by Newtonian fluid, with the flat disk rotating on the
top, and the textured surface fixed at the bottom. To reduce the computing complexity, we divide the full disk into
Ntex periodic sectors. In this study, the choice of Ntex will affect our results, and we chose Ntex = 10. Figure 1b is a
closer look of the design domain. Top plate is flat, rotating in the θ direction, while an arbitrary textured surface is
fixed at the bottom. Eventually, the texture surface design will be mapped into a full disk by applying the periodic
boundary condition.
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(a) Front view (after [2]) (b) Simulated experiment setup with one sector (after [14])

Figure 1: The experiment setup adapted from previous studies [2, 9]. (a) Front view of the setup, with one flat disc rotating
on the top, and a fixed textured surface at the bottom. The two disks are separated by Newtonian fluid. (b) One sector of the
experiment setup, with the axes showing the directions used in this study.

The surface texture profile when F = 7.03 and τ = 0.737 from the study by Lee et al. [2] is used as the starting
design point for all optimization studies presented here. This benchmark design is shown in Fig. 2. By applying
different upper bounds on shear loads, we can obtain a set of optimal points. This procedure will be discussed in
more detail in Sections 4.3, 4.4, and 6.

(a) Surface of one sector of the starting design (b) Full disk plot of the starting point

Figure 2: Benchmark design used as a starting design point for optimization studies in this paper. This benchmark design is
the optimal surface texture profile obtained during a previous study [2]. The corresponding normal force is FN = 7.03 N, and
the apparent shear load is τ = 0.737 (normalized). (a) Surface for a single disk sector of the benchmark design. (b) Full disk
image of the benchmark design.

4.2. Numerical Model for Texture Surface Hydrodynamics
Here we assume that the operating lubricant can be modeled as an incompressible Newtonian fluid with con-

stant viscosity, and that the flow occurs at low Reynolds numbers so that inertial terms can be neglected. We
also assume that the gap height is small compared to other length scales in the problem so that gradients in the
flow direction can be neglected. Based on these assumptions, the system may be modeled using the Reynolds
equation [15] in cylindrical coordinates:
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where p is the pressure, h is the gap height, η is the fluid viscosity, and Ω is the angular velocity. The Reynolds
equation is a linear, second-order partial differential equation with a non-constant coefficient for pressure that
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satisfies both conservation of mass and momentum. The velocity boundary conditions used to derive Eqn. (1) are:

at z = 0 : vθ = rΩ , and vr = vz = 0 (2a)
at z = h : vθ = vr = vz = 0. (2b)

Integrating conservation of momentum and applying boundary conditions produces the following velocity field:

vr =
1

2η

∂ p
∂ r

(
z2− zh

)
(3a)

vθ =
1

2η

1
r

∂ p
∂θ

(
z2− zh

)
+ rΩ

(
1− z

h

)
. (3b)

Schuh et al. [14] developed MATLABTM code for solving Eqn. (1) using the pseudo-spectral method, which
transforms the partial differential equation into an approximate system of algebraic equations:

K p = f , (4)

where:

K =
−ϕ

Ro−Ri
(I⊗D)T (M⊗M)(I⊗R)H3 (I⊗D)

−(Ro−Ri)

ϕ
(D⊗ I)T (M⊗M)

(
I⊗R−1)H3 (D⊗ I) (5a)

f =3ηΩ(Ro−Ri)(M⊗M)(I⊗R)(D⊗ I)h. (5b)

where ϕ is the total angle for a periodic sector, Ro is the outer radius, Ri is the inner radius, I is the identity matrix,
D is a full matrix containing coefficients for approximating the required derivatives, M is a diagonal matrix of
Gauss-Lobatto-Legendre (GLL) quadrature weights, R is a diagonal matrix of radius values from Ri to Ro, h is a
vector, reshaped from the matrix containing the gap height values at each grid point, H is a matrix with diagonal
elements from the vector h, and ⊗ is the Kronecker product. It was assumed in this derivation that the gap height
is periodic in the θ direction.

A previous design optimization study used h as an input to Eqn. (4), which was then solved to obtain the pres-
sure field, and the velocity field is computed using this pressure field [2]. These fields were then used to determine
the objective functions for a given gap height profile (load capacity and a friction metric). In this previous strategy
the Reynolds equation solver was treated as a black-box simulation. Each new design candidate tested by the op-
timization algorithm required simulation, contributing to significant computational expense as Reynolds equation
structure was not leveraged for more efficient solution. If we examine Eqn. (4) carefully, however, observations
reveal an opportunity to capitalize on problem structure utilizing both Simultaneous Analysis and Design (SAND)
method [16] and linearization. SAND involves simultaneous Reynolds equation solution and gap height (texture
design) determination. The first step is to rewrite Eqn. (4) in the following form:

[
Kr Kθ

][h3� pr

h3� pθ

]
= Ah, (6)

where pr is the gradient of the pressure in the r direction, pθ is the gradient of pressure in the θ direction, � is
element-wise multiplication (Hadamard product), and:

Kr =
−ϕ

Ro−Ri
(I⊗D)T (M⊗M)(I⊗R) (7a)

Kθ =
−(Ro−Ri)

ϕ
(D⊗ I)T (M⊗M)

(
I⊗R−1) (7b)

A =3ηΩ(Ro−Ri)(M⊗M)(I⊗R)(D⊗ I) . (7c)

In Eqn. (6), the design variable h appears on both the left and right hand side of the equation, and the equation
depends nonlinearly on the gap height. Using a SAND strategy, we combine our design and analysis variables into
a new independent optimization variable, denoted x here:

x =
[
h, pr, pθ

]T
. (8)
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To make Eqn. (6) linear in our design variable, we linearize h3� pr and h3� pθ near their tangent planes using
a multivariate Taylor series expansion:

h3� pr = h0
3� pr0 +3h0

2� pr0 �
(
h−h0

)
+h0

3�
(

pr− pr0

)
(9a)

h3� pθ = h0
3� pθ0 +3h0

2� pθ0 �
(
h−h0

)
+h0

3�
(

pθ − pθ0

)
, (9b)

where h0 is a nominal gap height, and pr0 is the pressure gradient in the r direction and pθ0 is the pressure gradient
in the θ direction for the nominal gap height. Substituting Eqns. (9a) and (9b) into Eqn. (6), using our new design
variable x and simplifying we obtain:([

Kr Kθ

][3H2
0 Pr0 H3

0 0
3H2

0 Pθ0 0 H3
0

]
−
[
A 0 0

])
x =

[
Kr Kθ

][3h0
3� pr0

3h0
3� pθ0

]
, (10)

where H2
0 Pr0 is a diagonal matrix with the elements h0

2� pr0 , the diagonal matrix H2
0 Pθ0 is composed of elements

h0
2� pθ0 , H3

0 is a diagonal matrix with the elements h0
3, and 0 is the zero matrix with appropriate dimensions.

Equation (10) can be rewritten in the following compact form:

K̂x = f̂ . (11)

All of the design variables appear only on the left hand side of Eqn. (11), and the right hand size is known
after the nominal gap height profile is given. Therefore, solving Eqn. (11) (with appropriate pressure boundary
conditions [14]) produces the associated pressure field gradients for a given gap height design.

Our two objective functions are the normal force FN and the non-dimensional shear stress τ∗. The normal force
is obtained by integrating the pressure field. Solving Eqn. (11), however, produces pressure field gradients. The
pressure field can be obtained from its gradient using:[

I⊗D
D⊗ I

]
p =

[
pr
pθ

]
. (12)

Once the pressure has been obtained, the normal force on the flat plate is calculated using

FN ≡
∫ 2π

0

∫ Ro

Ri

prdrdθ = Ntex

∫
ϕ/2

−ϕ/2

∫ Ro

Ri

prdrdθ , (13)

where:
Ntex =

2π

ϕ
. (14)

This is calculated numerically using:

FN = Ntex

(
ϕ (Ro−Ri)

4

)
(w⊗w)T (I⊗R) p, (15)

where w is the vector of GLL quadrature weights.
Pressure derivatives are used to determine the velocity using Eqns. (3a) and (3b), and derivatives of the velocity

components are used to determine the shear stress on the top plate:

τzθ |z=0 = η

(
∂vθ

∂ z
+

1
r

∂vz

∂θ

)
|z=0. (16)

Substituting Eqn. (3b) and simplifying gives:

τzθ |z=0 =−
(

1
2r

∂ p
∂θ

h+η
rΩ

h

)
. (17)

The torque on the flat plate is calculated from the shear stress as:

M ≡
∫ 2π

0

∫ Ro

Ri

(τzθ |z=0)r2drdθ = Ntex

∫
ϕ/2

−ϕ/2

∫ Ro

Ri

(τzθ |z=0)r2drdθ , (18)

4



which is calculated numerically as:

M = Ntex

(
ϕ (Ro−Ri)

4

)
(w⊗w)T (I⊗R2)

τzθ . (19)

The torque can then be used to determine the non-dimensional shear stress (objective function):

τ
∗ ≡

2
πR3

0
M

ηR0Ω

h0

=
2h0

ηπR4
0

M
Ω
. (20)

Using the variables defined in x, we can rewrite Eqn. (17) as:

τzθ |z=0 =−
(

1
ϕr

pθ h+η
rΩ

h

)
, (21)

where we have used
∂ p
∂θ

=
2
ϕ

pθ . (22)

Equation (21) is non-linear in h and pθ ; since we previously linearized our problem about h0 and pθ0 , we must
also linearize τzθ about h0 and pθ0 for our analysis to be consistent. Performing Taylor series expansions for the
non-linear terms produces:

pθ h = pθ0h0 + pθ0 (h−h0)+
(

pθ − pθ0

)
h =−pθ0h0 + pθ0h+ pθ h0, (23a)

1
h
=

1
h0
− 1

h2
0
(h−h0) =

2
h0
− 1

h2
0

h, (23b)

which when substituted back into Eqn. (21) yields:

τzθ |z=0 =−
((

pθ0

rϕ
−η

rΩ

h2
0

)
h+

h0

rϕ
pθ −

pθ0h0

rϕ
+2η

rΩ

h0

)
. (24)

This is calculated numerically as:
τzθ =−

[
Bh 0 Bpθ

]
x− c, (25)

where

Bh =
1
ϕ

Pθ0

(
I⊗R−1)−ηΩ(I⊗R)

(
H2

0
)−1

(26a)

Bpθ
=

1
ϕ

H0
(
I⊗R−1) (26b)

c =− 1
ϕ

Pθ0

(
I⊗R−1)h0 +2ηΩ(I⊗R)h0

−1, (26c)

and Pθ0 is a diagonal matrix of elements pθ0 , H2
0 is a diagonal matrix of elements h0

2, and h0
−1 signifies an

element-wise inversion of h0. Equation (25) can be used with Eqns. (19) and (20) to calculate the non-dimensional
shear stress.

4.3. Multi-objective Optimization
Since we are solving a multi-objective problem with two competing objective functions, the solution sought

is a Pareto frontier [17] that expresses the tradeoff between these two objectives. The ε-constraint method [18]
is a commonly used technique to convert a multi-objective problem into a set of single-objective optimization
problems. This is done by optimizing a single objective function while using the other objectives functions as
inequality constraints with bounds. By adjusting these bounds for the objective functions posed as inequality
constraints, we generate a set of problems. The solution of each of these problems produces a single point on the
Pareto frontier.
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Figure 3: Schematic showing how the ε-constraint method is used for our problem. We optimize one objective function (here,
maximizing normal force) while constraining the other metric using an inequality constraint (here, constraining apparent shear
load to be less than a certain value). The incrementally varied maximum bound on shear load is shown as a dashed line. Open
circles are the optimal design points obtained from each of the optimization subproblems. The gray circle is an example of a
dominated (suboptimal) design point. These optimal designs are on the Pareto frontier, shown with a thick solid black line.

Figure 3 demonstrates the conflict between our two objectives, 1) minimizing the shear load, which is repre-
sented by normalized apparent shear viscosity, expressed as ηa/η0, and 2) maximizing the normal force. Both
these objectives help reduce friction in this lubrication problem, which is the main source of energy loss. From the
Pareto frontier we can tell that, as normal force load FN increases, the apparent shear stress increases inevitably.
The feasible region for our design objectives is shaded; all optimal designs lie within this region. We optimized the
normal force with respect to a given apparent shear load, which was used as our inequality constraint. The dashed
black lines are different apparent shear load values, and the white circles are the optimal normal force values ob-
tained for each given shear load bound. The open circles lie on the boundary of the attainable set. Connecting the
white circles gives our Pareto front of optimal solutions, which is shown with the solid black line. The gray circle
at the top right is an example of a dominated point; it is dominated because feasible solutions exist where both
objectives can be improved simultaneously, as evident in Fig. 3. The texture designs that give this Pareto front are
the optimal texture designs.

4.4. Trust Region and Step Size
An adaptive trust region method is essential to control linearization error, and helps improve solution conver-

gence [19]. Here we implement a trust region method that involves five steps (described below).

4.4.1. Initialize Parameters

• Specify initial starting point (x0) and initial trust region radius (∆0). For gap height h, the initial trust region
radius is set to be 10% of the gap height value at each grid point, and for the gradient of pressure values pr
and pθ , the initial trust region radius is set to be 100.

• Set the trust region constants to: η1 = 0.01, η2 = 0.9, γ1 = γ2 = 0.5.

In the following development, we use f (xk) to indicate the objective function based on the original nonlinear equa-
tions, and m(xk) to represent the approximation of the objective function.

4.4.2. Step Size Calculation
Based on the linearized problem, a linear program with a trust region constraint is solved to determine a step sk to
determine a new design xk + sk (trial point) that is inside the trust region.

4.4.3. Acceptance of Trial Point
Define the acceptance criteria to be:

ρk =
f (xk)− f (xk + sk)

mk(xk)−mk(xk + sk)
. (27)

If ρk ≥ η1, then set the new design to xk+1 = xk + sk. If this is not the case (i.e., ρk < η1), the linear approxi-
mation is not sufficiently accurate, and we stay at the same point: xk+1 = xk.
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4.4.4. Trust Region Radius Update
We update the trust region depending on how the trial point (xk + sk) performs:

∆k+1 ∈

 [∆k,∞) ρk ≥ η2;
[γ2∆k,∆k] ρk ∈ [η1,η2];
[γ1∆k,γ2∆k] ρk < η1.

(28)

By comparing ρk with η1 and η2, the trust region can be adjusted. If the linear approximation is very accurate,
(i.e. the acceptance ρk is larger than η2), the trust region will be expanded. On the contrary, if ρk is small, the
trust region will be shrunk accordingly. In the implementation here, constant values were used within the specified
ranges for each of the three cases.

4.4.5. Step Size
Define sk = xk+1 − xk, and α to be the step length we move along the s direction. If f (xk+1) < f (xk),

xk+1 = xk +α ∗ sk. In this implementation, we used a fixed value for α of 0.01.

With this method, the trust region size is adjusted adaptively to maintain acceptable linearization accuracy.
When the algorithm uses a good search direction, and the estimate is accurate, the trust region is expanded. If the
LP algorithm does not converge, produces a poor search direction, or does not estimate function values accurately,
then we shrink the trust region to compensate. Inspired by the move limit method used in truss design method de-
veloped by John et al. [20], we choose a new design point with α as the move limit if no improvement is observed.
Instead of adaptively updating α as the paper suggested, we use a constant value, 0.01, in this study. Studying
strategies for updating alpha adaptively is a topic left for future work.

5. Verification
We compare our results to those reported previously for the same problem, but using a non-linear programming

(NLP) solution method with a spline texture design representation [10]. Here we use previous optimal designs from
the NLP solution as starting points for the sequential linear programming (SLP) strategy introduced here.

Table 1: Comparison of SLP to the full non-linear optimization method where the result from the non-linear optimization
are used as starting points for the SLP solution method. The SLP results match the non-linear optimization results exactly,
validating the SLP formulation.

Shear Viscosity 0.76 0.73 0.71 0.69 0.63 0.57 0.50

Normal Force (Non-linear) 6.25 6.00 5.75 5.50 5.00 4.25 3.25
Normal Force (SLP) 6.25 6.00 5.75 5.50 5.00 4.25 3.25

Error [%] 0 0 0 0 0 0 0

The results of the SLP and NLP solution strategies are compared in Table 1. SLP obtains the same optimal
normal force values as NLP, validating our method. However, the linear program cannot produce an improvement
over the NLP results as the linear programming method is only able to identify locally optimal points.

6. Results and Discussion
Using the results from the previous NLP study as our starting points (where FN = 7.37 N), we generated the

Pareto set by using different values for the shear load bound (as shown in Section 4.2). Sample surface texture
designs from the Pareto set are shown in Figs. 4a and 4b. (The reader can generate these plots using the code
provided for numerical experiment replication [21]). The Pareto set was obtained using the optimizer MOSEKTM

with a single start method coupled with our trust region strategy. This improves the ability to find optimal points
that may be far away from the initial design point.
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(a) Sample surfaces, τ∗ = 0.481, F = 2.91 (b) Sample surfaces, τ∗ = 0.632, F = 5.20

Figure 4: Two sample surfaces for a single disk sector. Each surface texture design corresponds to a different point on the
Pareto frontier, as shown in Fig. 6.

(a) Sample full disk plot, τ∗ = 0.481, F = 2.91 (b) Sample full disk plot, τ∗ = 0.632, F = 5.20

Figure 5: Two sample texture designs for a full disk. Each disk image corresponds to a different point on the Pareto frontier,
as shown in Fig. 6.

Figure 6: Comparison of the Pareto sets obtained using the NLP method [10] and the SLP method introduced here. SLP
produces better results than NLP when compared to spline surface representations of order N = 3, 4, and 5. The NLP solution
with spline order N = 5 was chosen as the reference case. The SLP solution performs similar to the reference case in the region
0.469 < τ∗ < 0.628, but performs better than the reference case at both high and low τ∗. The NLP solutions with spline order
N = 6 and 7 (improved resolution) perform better than the SLP solution.
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Figure 6 compares the Pareto fronts obtained using the SLP solution to those obtained using NLP with varying
spline representation orders (N ∈ {3,4,5,6,7}), where N = 5 is used as a reference solution. The SLP solution
performs similar to the reference NLP solution in the region 0.469 < τ∗ < 0.628, but performs better than the
reference case at both high and low τ∗ values. In the region where 0.469 < τ∗ < 0.628, there are points where the
SLP method performs worse than the NLP method (maximum 25% deviation in normal force value between the
two methods at τ∗ = 0.5). This may be due to the choice of trust region and step size. Another factor may be the
existence of multiple distinct surface texture designs with the same normal force value for a give shear load, as
shown in Fig. 2.

The greatest advantage of using the SLP strategy is realized when comparing computational expense for so-
lution. Table 2 compares the total computation time required (on average) to find an optimal point when using
different N values for both the NLP and SLP methods. The reported computation time was obtained using a dual-
core Intel CoreTM i5-4250U processor for all studies. As with many numerical optimization problems, we see that
there is a trade-off here between solution quality and computational expense. Introducing the SLP strategy allows
us to reduce computational expense significantly while achieving solution quality comparable to many of the NLP
results. Table 3 shows how much faster the SLP solution is compared to the different NLP solutions. Even for the
lowest-order spline design representation, the NLP method is almost twice as slow as SLP. When comparing the
highest-order NLP solution time to SLP, we find that SLP is almost 20 times faster.

Table 2: Computational Time to Find An Optimal Point (on Average)

N = 3 (NLP) N = 4 (NLP) N = 5 (NLP) N = 6 (NLP) N = 7 (NLP) SLP

3.7 min 7.3 min 12.2 min 17.5 min 25.1 min 1.3 min

Table 3: Relative Computational Time Comparison

NLP with reduced design representation N = 3 N = 4 N = 5 N = 6 N = 7

Time improvement using SLP [%] 185 462 838 1,246 1,831

7. Conclusion
Several numerical studies have been performed based on a Reynolds equation model to examine the effects of

surface texture design variation on friction reduction and normal force generation. Previous optimization studies
achieved efficient solution by reducing design representation dimension using spline texture representation, and
solving the optimization problem using nonlinear programing (NLP). In these previous studies the simulation was
treated as a black box. Here, model structure was leveraged to formulate a sequential linear programming (SLP)
strategy with the objective of simultaneously improving design representation fidelity and computational efficiency.
Improved design fidelity may support identification of new types of designs and physical mechanisms to further
improve system performance over the previous NLP results, although this consideration is a topic of ongoing work
and not within the scope of this article.

Numerical studies presented here indicate significant improvements in computational efficiency, while main-
taining reasonable solution quality. While NLP solutions using high-order spline representations produced higher-
performance designs than SLP, the SLP solution was at least an order of magnitude faster. Another improvement
is robustness to starting point. The previous NLP strategy required a multi-start approach to converge to a good
solution reliably. In this study it was shown that a single well-selected starting point was sufficient for generating
all Pareto-optimal points. This method was demonstrated using a sector of the sliding surface, but it could be
extended to other models based on a semi-circle, or even the full rotating disk.

The SLP method, however, has several clear limitations. As SLP cannot explore outside the trust region, once
the trial point drops inside the feasible region it can only find a local optimum. Thus, it cannot improve the solution
beyond the best results from the previous NLP studies. In addition, because of linearization error, the SLP method
produces a design with reduced performance when τ∗ values are between 0.469 and 0.628.

Another limitation of the current implementation relevant to moving trust regions should be highlighted. When
using the ε-constraint method, a multi-objective optimization problem is decomposed into a set of single-objective
subproblems. A typical strategy in the solution of these subproblems is to use the result of one subproblem as
a starting point for a neighboring subproblem. This typically helps reduce solution expense. In this particular
implementation, however, if we use the solution of a subproblem with a larger shear load bound as a starting point
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for a subproblem with a smaller shear load bound, the initial point will violate the shear load constraint. When
the linear program (LP) solver detects a constraint violation, it attempts to satisfy the constraint by moving the
solution far from the current design. A large single step is taken, reducing iterations. Conversely, when solving a
subproblem using a starting point obtained from a lower shear load subproblem, the trust region limits progress.
Even if the trust region radius is adapted, effective design exploration is hampered. To address this issue, here we
began the process by solving the largest shear load subproblem first, and decremented the shear load constraint.
Thus, in this study, we solve this problem beginning with the largest shear load case and using the result of this
subproblem, lower shear load subproblems are solved. An improvement of this trust region updating issue is a
topic of ongoing work.

Several SLP method improvements and research questions have been identified for future work. A more so-
phisticated step size update strategy may help accelerate convergence, and improve exploration of a wider range
of designs. SLP method robustness should be improved, including the ability to start from arbitrary design points
(such as a flat plane) and converge to high-performance solutions. Finally, alternative formulations may better
capture the underlying physical mechanisms that lead to improved performance. For example, a quadratic approx-
imation may be a better approximation for the governing equations and objective functions. While this may help
drive the solution method to better designs, an LP can no longer be formulated. A problem with quadratic con-
straints will not be as easy to solve as an LP, but may still support use of problem structure for solution efficiency
better than previous general NLP studies.
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