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Abstract

Design engineers have traditionally selected simple materials, including linear elastic solids

and Newtonian fluids, for their designs, and optimize designed systems within the limitations

of preselected materials. However, allowing complex materials (e.g., viscoelastic materials

and soft solids) as options for system materials can eliminate some associated limitations

on design freedom. Furthermore, designing material characteristics may open up avenues to

unprecedented designs with optimal materials. This dissertation research presents integrated

design methodologies for the system-level performance-driven design of structural geometry

and viscoelastic material properties. By relaxing unnecessary assumptions and optimizing

system-level performance by searching the rich spectrum of possible design options throughout

the combined structural and material design space, the studies in this dissertation seek to

obtain design improvements, which previously were inaccessible using conventional design

paradigms and assumptions.

Achieving this integrated design of structural geometry and viscoelastic material properties

has many underlying challenges. One of the main challenges is how to formulate design

representations that can efficiently and effectively model the system behavior within the

limits of physics, but are not restrictive with respect to other factors to allow full design

exploration freedom. Another challenge comes from the numerical implementations and limits

on computational resources available to design engineers. Higher-fidelity models or models

with complex behavior (e.g., viscoelastic stress relaxation) are generally more expensive

to solve. However, the computational cost of numerical models is a crucial factor in the

success of integrated and multidisciplinary design optimization. Not all models are design-
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appropriate. Specifically, quantities defining viscoelastic constitutive relations are interrelated

to each other, and not all are independently controllable. Such challenges obstruct design

with and of complex materials and integrated design associated with these material models.

Thus, identifying underlying challenges and overcoming them are the main purposes of this

dissertation research.

This dissertation is organized into two parts. The chapters in Part I present methodologies

for designing surface texture geometries and other challenging design problems. Studies in

this part present surface texture parameterizations for enhancing the lubricated frictional per-

formance indices by eliminating unnecessary design constraints (Chapter 2), high-dimensional

design optimization of surfaces texture using linearization, sequential linear programming,

and trust-region methods (Chapter 3), and novel efficient sampling and implicit constraint

generation methods for multiobjective surrogate-based optimization for challenging problems

(Chapter 4). The chapters in Part II present integrated design studies and methodologies

that apply to the design problems of viscoelastic material systems. Studies in this part

present numerical methods for efficiently solving viscoelastic stress relaxation with con-

volution integrals (Chapter 5), a design-appropriate continuous stress relaxation spectra

design representation and its use in the linear viscoelastic design problem (Chapter 6), and

method for a simultaneous design of surface texture and non-Newtonian lubricant properties

using nonlinear viscoelastic models to achieve better tribological performance beyond the

results of the study presented in the earlier chapter that demonstrated surface texture design

(Chapter 7).

The methodologies and design studies presented in this dissertation have an impact

on exploring previously-unexplored design spaces from an integrated structural and mate-

rial systems design perspective. The contributions presented in this dissertation open up

new possibilities for design engineers to better use complex materials in the system-level

performance-driven design studies incorporating a new material design paradigm.
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Chapter 1

Introduction

Engineering design often involves comprehensive decision-making activities, including problem

definition, formal representation, and optimization processes, spanning multiple interdisci-

plinary domains. Understanding interfaces between disciplinary areas opens opportunities

for design improvement via a deep understanding of underlying mechanisms across the fields,

and for the discovery of novel designs and concepts, leading toward unprecedented design

innovations. Integrated design is a holistic approach that aims to solve design problems with

many complications, including subproblems, multidisciplinary involvement, multiobjective

optimization problems (MOPs) with conflicting design decisions, and many other design

couplings all together. Figure 1.1 shows a multidisciplinary design optimization (MDO)

architecture, referred to as simultaneous analysis and design (SAND) [1]. The integrated

design approaches often utilize techniques, such as the SAND, to resolve design couplings

associated with the problem in a holistic way [1, 2]. The integrated design approach is

a powerful tool to enhance both design outcomes and design processes of problems with

interdisciplinary design interactions.

Human activities in engineering design have played a significant role in building better

designs with engineering knowledge. To achieve better performance and quality, engineers

set design objectives for their system or product, while constraining the design space to

meet various required conditions, such as laws of physics, budgets, dimensions, robustness,

and other realistic barriers. However, these constraints significantly limit the freedom to

explore design alternatives. Topics in design research include identifying more accurate,

less restrictive constraints that enable an expanded design space to achieve unprecedented

1



Figure 1.1: Diagram for representing the structure of the SAND, a MDO architecture [1, 2].
The figure adapted from Zhang et al. [3]. This method is utilized in studies presented in
Chapters 3 and 5.

performance enhancement [4–6]. This effort can be made during all activities of design

processes, and specifically by releasing unnecessary assumptions that limit the design to

have specific geometrical shapes [4], topologies [7], architectures [8], manufacturing processes

[6], and design processes [9]. Figure 1.2 demonstrates a significant performance increase by

releasing geometric constraints that are widely used, but unnecessary. Starting from ‘circular’

symmetric and asymmetric texture profiles (which are shown as red circle and markers),

releasing the area confining dimple shaped texture significantly reduced the friction (yellow

+ marker), and allowing free-form surface geometry simultaneously improved both frictional

(apparent viscosity) and load-carrying capacity (normal force) metrics by over an order of

magnitude (markers denoted as ‘spline’).

Along with conceptual, structural, architectural, and many other phases of design activities,

engineering design processes often involve material selection, which influences the overall

success of the design, but is overlooked in many cases. Engineers conventionally select simple

materials, including linear elastic solids and Newtonian fluids, and optimize placement of the

2



0 0.2 0.4 0.6 0.8 1
Normalized apparent viscosity (ηa/η0)

0

1

2

3

4

5

6

7

F( 
ecrof la

mro
N

N
)

Spline, N=3
Spline, N=4
Spline, N=5 (ref. case)
Spline, N=5, symmetric
Spline, N=6
Spline, N=7
Inclined plane
Circular
Circular, symmetric

di
re

ct
io

n 
of

de
si

re
d 

pe
rfo

rm
an

ce

di
re

ct
io

n 
of

de
si

re
d 

pe
rfo

rm
an

ce

Figure 1.2: Performance indices are compared in the objective function space for texture
designs with different parameterizations and constraints. Designs are improved significantly by
increasing design flexibility via the texture surface representation and eliminating unnecessary
design restrictions, interpreted as predefined shapes.

material and its geometry within the limitation of behaviors and responses of these simple

materials. However, this intuitive selection of materials frequently limits the design freedom

for seeking better performance, and mostly results in obtaining suboptimal designs. In such

circumstances, allowing complex materials, particularly viscoelastic (VE) fluids and soft

solids, as options for the material choice, will remove associated limitations on design freedom

[10, 11]. Further, allowing more freedom via designing the complex materials may enable

novel system performance [12–14].

This dissertation research presents methods for more fully utilizing design freedom by

creating (1) more general geometric parameterizations, (2) design-appropriate fluid and

structure representations, and (3) efficient design optimization algorithms and formulations

to achieve better engineering designs. In addition, this dissertation presents analyses based

on (4) design knowledge and interfacial mechanisms extracted from design solutions obtained
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through the activities presented in this research.

The dissertation is organized into two parts. The chapters in Part I present methodologies

for designing surface texture geometries and other challenging design problems. Chapter 2

addresses different parameterizations that describe texture design in full-film lubricated

sliding contact. The studies show a development of design representations that eliminates

unnecessary design restrictions, and explores more general design spaces to achieve novel

system performance beyond what was available with predefined texture shapes. Chapter 3

introduces a sequential linear programming (SLP) approach that can be used to handle high-

dimensional design freedom beyond the parameterization approach used in Chapter 2. Due to

nonlinearity associated with the coupling between formulations for design and physics, SAND

was utilized to weakly couple these two domains. The final problem is linearized and solved

sequentially using a trust-region method. Chapter 4 includes novel sampling strategies and

an implicit constraint generation and management method for surrogate-based multiobjective

optimization problems (SB-MOPs). The multiobjective adaptive surrogate model-based

optimization (MO-ASMO) framework presented in this chapter is specifically developed

for resolving design challenges that texture design problems exhibit. However, the study

also demonstrated the capability of MO-ASMO framework for high-dimensional challenging

problems, extending its impact beyond design studies presented in this dissertation.

The chapters in Part II present integrated design studies and methodologies that apply to

the design problems of VE material systems. Chapter 5 addresses problem characteristics and

challenges when designing with and of VE materials. This chapter then presents a survey

and analyses of computational methods for solving convolution integral terms to calculate VE

stress relaxation, with additional techniques that can further reduce computational effort. A

time-domain truncation technique is introduced, and the use of derivative function surrogate

modeling (DFSM) combined with a computationally-efficient linear time-invariant state-space

(LTISS) system approximation for the convolution integral is proposed. Chapter 6 presents

the use of design-appropriate models. The continuous relaxation spectra design representation
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is analyzed, relations and conversions between rheological quantities are discussed, and these

concepts are demonstrated using a test problem. Chapter 7 presents the integrated design of

surface textures and nonlinear VE lubricant materials using the surrogate-based multiobjective

optimization approach to achieve both low friction and high load-carrying capacity, with the

MO-ASMO framework introduced in Chapter 4. Two different non-Newtonian fluid models

(the Criminale-Ericksen-Filbey (CEF) and multimode Giesekus models) are used in solving

this simultaneous MOP. Due to computational complexity and observed solver instabilities to

certain ranges of design inputs, the constraint boundary generation method based on support

vector domain description (SVDD) is utilized to adaptively construct and refine estimates of

implicit boundaries to prevent more samples from being created in the regions that are likely

to lead to simulation failure.

Finally, Chapter 8 summarizes the studies presented in this dissertation and provides

concluding remarks. As a whole, this dissertation presents a system-level performance-

driven material design paradigm, and integrated structural geometry and complex materials

(particularly VE fluids) design studies are found throughout the two parts and six main

chapters (Chapters 2–7). The presented studies are interrelated to each other as part of a

strategy to propose comprehensive design methodologies that may help advance engineering

design with complex material systems. With the new paradigm of integrated material design

in a system-level approach, we anticipate opening up more expansive possibilities for better

designs by exploiting material properties and structures. The integrated design strategies

presented in this dissertation are expected to enable exploitation of previously-unexplored

design domains with truly new materials, new methodologies, and new design principles

that potentially enable new products and systems with more efficient, cost-effective, and

even life-changing possibilities that lead to opportunities for societal benefits, including more

sustainable ways of development.
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Part I

Methodologies for Surface Texture

Design
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Chapter 2

Arbitrary Surface Texture Design Enhances
Full-Film Lubrication Performance1

2.1 Summary

Minimizing energy loss and improving system load capacity and compactness are important

objectives for fluid power systems. Recent studies reveal that micro-textured surfaces can

reduce friction in full-film lubrication and that asymmetric textures can reduce friction and

increase normal force simultaneously. As an extension of these previous discoveries, we

explore how enhanced texture design can maximize these objectives together. We design

surface texture using a set of distinct parameterizations, ranging from simple to complex, to

improve performance beyond what is possible for previously investigated texture geometries.

Here we consider a rotational tribo-rheometer configuration with a fixed textured bottom

disk and a rotating top flat disk with a controlled separation gap. To model Newtonian

fluid flow, the Reynolds equation is formulated in cylindrical coordinates and solved using a

pseudospectral method. Model assumptions include incompressibility, steady flow, constant

viscosity, and a small gap height to disk radius ratio. Multiobjective optimization problems

(MOPs) are solved using the epsilon-constraint method along with an interior-point nonlinear

program (NLP) algorithm. The trade-off between competing objectives is quantified, revealing

mechanisms of performance enhancement. Various geometries are explored and optimized,

including symmetric, asymmetric circular dimples, and novel arbitrary continuous texture

geometries represented using two-dimensional cubic spline interpolation, in this study. Shifting

1Reprinted by permission from ASME: Journal of Mechanical Design (Lee, Schuh, Ewoldt, and Allison.
Enhancing full-film lubrication performance via arbitrary surface texture design. J. Mech. Des. 139(5):
053401), ©2017
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from simple dimpled textures to more general texture geometries resulted in significant

simultaneous improvement in both performance metrics for full-film lubrication texture

design. An important qualitative result is that textures resembling a spiral blade tend to

improve performance for rotating contacts.

2.2 Introduction

Friction is a significant source of energy loss in mechanical components. The influence

of surface roughness within lubricated hydrodynamic contacts has been well-studied in

the tribology community. Creating micro-dimples at frictional contact interfaces is known

to be effective in reducing frictional losses [15–17]. Furthermore, recent studies proposed

a possibility that textured surfaces for sliding hydraulic interfaces can reduce effective

friction, improve sealing, and increase the load capacity simultaneously by creating texture

in favorable shapes and dimensions [18–20]. However, the roughened or dimpled surfaces

in previous studies were restricted to relatively simple shapes, such as predefined shapes,

randomly roughened surfaces, and macroscopic sinusoidal textures [17, 21–29]. Although

most existing studies in the literature include either symmetric texture profiles or asymmetry

only for the top profile of texture rim perimeters, Refs. [26, 27, 30] showed that generating

normal force with asymmetric depth profiles is more effective than with symmetric depth

profiles. Due to recent manufacturing advancements, such as additive manufacturing and

electric/electrochemical micromachining, textures with more general geometries and scales

are realizable for hydrodynamic lubrication surfaces [18, 31, 32]. Here more general texture

geometries are investigated.

Film lubrication involves lubricant flow, which is often modeled using the fluid flow

governing equations (e.g., Navier-Stokes equations). Solving general forms of these equations

is computationally expensive, limiting the utility of such models for design studies [19, 33].

In hydrodynamic lubrication, however, the distance between sliding surfaces is much smaller

8



than other length scales in the system; this allows the governing equations for flow to be

simplified to the Reynolds equation, which is more favorable for computation [34]. In a recent

study, the Reynolds equation was solved for the full-film lubrication problem with circular

dimples using the pseudospectral method [35]. This numerical method exhibits exponential

convergence with increasing order of polynomial basis function, is computationally efficient,

and has been validated against experiments [35, 36].

Here we are building upon this pseudospectral solution method for the Reynolds equation

to explore a much wider range of surface texture designs with the primary objective of friction

reduction. Arbitrary continuous texture shapes are optimized using effective parameterization

techniques. Important existing options for describing curved shape designs include analytical

approaches, basis vectors, domain elements, Fourier descriptors, polynomial functions, re-

sponse surfaces, and splines [37, 38]. These methods are often used in aeronautical system

design (e.g., airfoil shape optimization [37]) and other applications (e.g., photo-voltaic internal

reflection texture design [39]). The specific parameterization used in this study involves

spline functions defined in two orthogonal directions to represent arbitrary texture shapes in

three-dimensional space.

2.3 Problem Description

The objective of the design problem in this study is to maximize the film lubrication efficiency

and effectiveness by designing the shape of the textured surface using systematic methods.

The experimental setup in Schuh and Ewoldt [30] revealed that asymmetric-depth-profile

dimpled surface textures decrease frictional loss. Figure 2.1a illustrates the problem setup

used for the previous experimental research. Based upon this configuration, we perform a

more comprehensive computational study here enabled by more flexible texture surface design

representation and exploration. A pair of gap-controlled disks are aligned axially and are

separated by a Newtonian fluid. The rotating upper disk is flat, while the stationary bottom
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Figure 2.1: Textured surface design problem setup adapted from experiments conducted
by Schuh and Ewoldt [30]. The periodic asymmetric dimpled textures used in the previous
study are replaced here with arbitrary continuous texture shapes. (a) Front view of the
experimental setup. (b) Top view of one textured surface periodic sector. (c) 3D view of
circular symmetric dimpled periodic sector. (d) 3D view of arbitrary textured periodic sector.

disk is textured. All points of the surface in the design domain—illustrated in Fig. 2.1b—are

defined using a moderate-dimension spline representation. The design domain is a periodic

sector of the bottom disk instead of the entire disk. The full disk is divided into Ntex sectors.

The number Ntex is an arbitrary choice, and Ntex = 10 is selected for the studies presented

here. Future work may involve adjusting Ntex, or alternate domain representations, but is

outside the scope of this study. Simulation results are equivalent to the behavior of a full

disk with repeated sectors. This simplification reduces the computational expense and is

assumed to be reasonable due to the rotational nature of the setup. The sector surface design

is assumed to be periodic, i.e., the texture repeats and the boundaries of each sector match

to preserve texture continuity. This is consistent with the Ntex = 10 repeating dimples in the
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(a) (b)

Figure 2.2: An example of texture height profile contours shown for a design domain sector
and for a full disk. Darker color corresponds to a lower surface level (larger gap height) (a)
Design domain periodic sector. (b) Full disk shape.

experiments [30]. Figure 2.2 presents a visualization of how a repeated sector represents a

periodic texture design for a full disk surface. While the design optimization process and

the flow simulation are computed using the single-sector design domain given in Fig. 2.2a,

the results correspond to physical behavior for a full disk shown in Fig. 2.2b due to periodic

boundary conditions.

2.4 Surface Parameterization Method

In previous related work, surface textures have been described using very simple parame-

terizations. For example, one strategy assumes that surface texture features consist only of

cylindrical dimples, either with flat or angled lower surfaces, and are parameterized using

dimple diameter, depth, and lower surface angle [19, 30]. Another strategy prescribes a

set of allowable surface textures (e.g., circle, ellipse, triangle) and selects among them by

comparing performance [21, 25, 26]. Another study designed texture with respect to its top

profile view, but maintained the gap height inside the texture at a fixed value [40]. This

approach provides a general outline shape as a texture boundary, but still does not represent

11



(a) (b)

Figure 2.3: Mesh shapes and node point structure for design representation and flow simulation.
The mesh for a reduced-dimension cubic spline texture shape design representation is shown
on the left. This design mesh is much more coarse than the mesh on the right that is required
for accurate simulation. The surface geometry defined by the cubic spline is interpolated
to determine all the height values at the fine mesh points required for simulation. (a)
Coarse mesh (6× 6 nodes) for design representation. (b) Fine mesh (26× 26 nodes) for flow
simulation.

a general height profile for texture design.

A core objective of the present study is to perform a design exploration of much more

general texture designs as a means to gain greater insight into surface texture design for

enhanced efficiency. One strategy is to simply use hij, the surface height at computational

mesh nodes, as the surface design description. While this provides high accuracy and a

high-resolution design description, it results in a large-dimension nonlinear optimization

problem. Our current implementation of the optimization problem solution requires treating

the simulation (i.e., in this study, lubricant flow computation) as a black box, necessitating

finite difference calculations. While ongoing work is focused on investigating alternative

implementations that leverage problem structure, such a large-dimension design representation

is impractical for the present study. In previous work, it was determined for this system

configuration that the coarsest accurate mesh for simulation involves 26×26 nodes (polynomial

order N = 25, see Sec. 2.5.1 for detail) [35]. Using hij directly, accounting for periodic
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Figure 2.4: Alternative texture shape design representations. A cross-sectional view of each
representation is shown in the top row, while a top view of each textured sector is shown
in the bottom row. The gray area denotes the textured region (non-gray regions indicate
unchanged flat surfaces). The top flat plates are rotating in the direction of the thick blue
arrows, while the bottom textured surfaces are fixed. (a) Symmetric cylindrical texture. (b)
Asymmetric cylindrical texture. (c) Asymmetric planar texture spanning the full sector area.
(d) Arbitrary continuous texture with symmetry constraint. (e) Arbitrary continuous texture.

boundary constraints, would therefore require (25 + 1) × 25 = 650 optimization variables.

Therefore, a reduced-dimension design representation is needed2. As detailed below in

Sec. 2.4.4, we use a two-dimensional cubic spline on a coarse mesh (Fig. 2.3a) for design

representation and interpolate to a finer mesh for simulation (Fig. 2.3b).

We consider several types of textures, of varying design freedom, shown in Fig. 2.4. The

simple angled cylindrical dimple textures from previous work are illustrated in Figs. 2.4a-

2.4b. The aim here is to support the exploration of more general texture design shapes, as

shown in Figs. 2.4c-2.4e, with reduced dimension, and to evaluate performance improvements

available through these more general texture designs. The simplified cylindrical texture

parameterization is reviewed first, followed by a description of a more general two-dimensional

spline representation.

2Chapter 3 presents the solution of full-dimensional large scale version of the same design problem using
the sequential linear programming (SLP) method [41].
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Table 2.1: Cylindrical texture surface parameters

Item symmetric cylinder asymmetric cylinder

Disk radius Ro [mm] 20 20
Texture location Rc [mm] 14.3 14.3
Sector division Ntex [–] 10 10
Nominal gap h0 [mm] 0.269 0.269
Texture radius Rt [mm] 1 ≤ x1 ≤ 4 1 ≤ x1 ≤ 4
Texture depth h [mm] 0 ≤ x2 ≤ 2.5 –
Inclination β [◦] 0 0 ≤ x3 ≤ 20

2.4.1 Cylindrical Textures

The previous experimental setup involved a single cylindrical dimple with a fixed location in

each sector. The asymmetric texture angle was varied in those previous studies to gain an

initial understanding of this behavior [19, 30]. Here we build upon these initial studies by

optimizing this dimpled texture design. The complete set of cylindrical dimple parameters is

listed in Table 2.1. Design variables include the radius and the depth (x1, x2) for symmetric

textures or the radius and the angle (x1, x3) for asymmetric textures. Geometric configurations

of these textures are illustrated in Figs. 2.4a–2.4b, along with the shape parameters. We

used a nominal gap h0 of 0.269 [mm] to compare to experiments; this value of h0 is fixed

and used as lower bound of the gap distance. Also, see Fig. 2.4b for a visualization of how

the inclination β in Table 2.1 is defined in the cylindrical texture with an asymmetric height

profile.

2.4.2 Inclined plane spanning the full disk sector

We will see that larger radius textures improve performance. With this observation, we

can predict that if the texture area spans the full sector area, it may be possible to further

improve performance. A new geometric parameterization is defined to demonstrate the effect

of expanded texture area, where an entire sector is an inclined plane tilted at angle β, as

shown in Fig. 2.4c. Note that this geometry is continuous but nonsmooth.
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2.4.3 Other low-order design representations

Polynomial Texture

A few additional low-order design representations were investigated in addition to the

cylindrical and inclined plane texture parameterizations. First, a unimodal polynomial

function was used to generate the height profile by specifying the location of the peak

function value. Height values at both periodic sides and the inner/outer boundaries were

fixed to the nominal gap height (h0). Numerical experiments indicated that this class of

texture performed poorly, possibly because large local slopes could not be achieved. Detailed

results for this case are omitted for brevity.

Radial Basis Function Texture

Radial-basis functions (RBFs) are used widely in approximating or interpolating functions.

RBFs were tested as a texture geometry representation where the height and location of a

number of thin-spline RBFs were used as design variables. Several challenges were discovered.

Changing texture design in significant ways requires changing the number of RBFs used,

which cannot be done during the optimization solution using continuous algorithms. In

addition, the number of parameters required is large relative to the range of texture geometries

that are accessible. Each RBF requires at least three parameters. RBFs do not provide a

low-dimension representation, and do not support efficient design space exploration for this

problem compared to the spline representation discussed next. Detailed results for this case

are also omitted for brevity.

2.4.4 Two-dimensional cubic spline interpolation

Here we introduce a low-dimension texture design representation that supports the description

of arbitrary continuous geometries. This provides enhanced design flexibility and the possibil-

ity of capitalizing on new mechanisms for improving fluid system performance. To describe
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Table 2.2: Spline interpolated textured surface parameters

Item symmetric sector asymmetric sector

Disk radius Ro [mm] 20 20
Sector division Ntex [#] 10 10
Nominal gap h0 [mm] 0.269 0.269
Texture depth hij [mm] h0 ≤ xij ≤ 1.5 h0 ≤ xij ≤ 1.5
Slope constraint ψ [◦] 30 30

the full-sector texture design using a limited number of design variables, the height profile is

specified at nodes of the coarse mesh shown in Fig. 2.3a. As a manufacturability constraint,

the inclination angle between coarse mesh nodes is limited to a maximum of 30◦. Detailed

parameters used in this representation are given in Table 2.2. After specifying a low-resolution

height profile, the two-dimensional spline representation is used to map this profile onto the

fine computational mesh shown in Fig. 2.3b. This allows the surface texture design to be

specified using a limited number of design variables, while still supporting high-resolution

simulation. Coarse mesh node heights are the only design variables in this parameterization.

Because of the periodic constraint at the left and right sector sides, the design variables

include the height profile of only one of two sides. Thus, for (N + 1)× (N + 1) nodes, the

number of design variables is (N + 1)×N . Alternatively, a texture symmetry constraint can

be imposed. With symmetry, the number of design variables for (N + 1)× (N + 1) nodes

is d(N + 1)2 /2e, where d·e is the ceiling function. Symmetric designs are investigated first,

as shown in Fig. 2.4d, followed by studies of asymmetric designs, shown in Fig. 2.4e, that

further improves system performance.
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2.5 Flow Simulation Method

2.5.1 Reynolds Equation

The gap-controlled full-film shear flow is modeled following the study presented by Schuh et al.

[36]. This model was based on physical experiments with surface textures and Newtonian

fluids, where cavitation effects were not observed [30]. Therefore, the model chosen does

not include cavitation, and any use of cavitation is outside the scope of this study. The

Reynolds equation, given in Eq. (2.1), satisfies both mass and momentum conservation for an

incompressible Newtonian fluid under the assumptions that (1) inertia terms are negligible,

and (2) the gap is small compared to other length scales in the geometry [42].

1

r

∂

∂r

(
rh3∂p

∂r

)
+

1

r

∂

∂θ

(
h3

r

∂p

∂θ

)
= 6η0Ω

∂h

∂θ
(2.1)

The pressure field p (r, θ) from Eq. (2.1) is used to calculate the velocity field u (r, θ, z) in

Eq. (2.2).

ur =
1

2η0

∂p

∂r

(
z2 − zh

)
(2.2a)

uθ =
1

2η0r

∂p

∂θ

(
z2 − zh

)
+ rΩ

(
h− z
h

)
(2.2b)

Boundary conditions for velocity are uθ = rΩ and ur = uz = 0 at z = 0, and uθ = ur =

uz = 0 at z = h. We use steady-state conditions with fixed angular velocity Ω = 10 [rad/s]

and constant viscosity η0 = 1.4 [Pa s]. The Reynolds number, based on the nominal gap,

is Re = ρΩRoh0/η0 = 0.033, and this value can be applied to the predefined dimple shape

texture cases. For the arbitrary continuous texture cases, the Reynolds number is instead

computed based on the range of the gap, and can vary from 0.033 to 0.186. These values

correspond to the experimental conditions of Schuh and Ewoldt [30], but the approach is
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general, and results can be made nondimensional by scaling with respect to viscous effects

(p ∼ η0RΩ/h0) [18].

The details of simulating the partial differential equation (PDE) in Eq. (2.1) are described

in Ref. [36]. Briefly, the equation is discretized using the pseudospectral method, which is a

variation of the weighted residual technique (WRT), where the PDE is solved in its variational

form [43]. The resulting integrals for the variational form of the PDE are solved using Gauss-

Lobatto-Legendre (GLL) quadrature, where the function evaluations occur at the GLL points

and the quadrature weights are chosen optimally such that integrals of the solution are exact

for polynomials of degree 2N − 1, where N is the number of evaluation points (shown as

nodes in Fig. 2.3b). For all case studies presented here, a fixed number of computational

mesh points, as illustrated in Fig. 2.3b, was used for the Reynolds equation solver. This

computational mesh density is validated to be sufficient for accurate objective function

prediction [35]. Since the Reynolds equation model is solved using the same mesh for the

entire set of studies, its computational cost and prediction accuracy are independent of design

representation fidelity. Full details of this methodology are given in Refs. [35, 36, 43, 44],

where the model predictions have been validated against experiments from Refs. [30, 35].

A previous study emphasized that the dimensionless parameters are important for inter-

preting the physics of lubricated sliding contacts [18]. However, we do not use dimensionless

parameters in flow simulation or in the optimization formulation. Analyses with dimensional

variables in this study are still meaningful because similarity is maintained for the flow within

the range of Reynolds numbers we are modeling. Results could be made dimensionless by

scaling with respect to viscous effects [18].

2.5.2 Boundary Conditions

The Reynolds equation model for this study predicts the pressure field with assumptions that

recirculation is not present in the velocity field, that the r and θ direction velocity field is a

linear combination of simple shear and pressure-driven flow, and that the pressure is invariant
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in the z-direction. In the experiments, the outer edge of the textured domain was an oil-air

interface with the air at atmospheric pressure. Boundary conditions on the pressure and the

velocity at the outer edge can be derived using the conservation of normal and tangential

stress. However, it is not possible to directly implement the boundary conditions on the

velocity field, because the Reynolds equation only defines and manipulates the pressure field

(unlike the Navier-Stokes equations). However, we have explicit equations for velocity fields

in terms of pressure as given in Eq. (2.2). Therefore, boundary conditions on velocity need

to be converted to pressure conditions.

In the design studies presented here, it is assumed that texture variations extend all the

way to the outermost boundary of the sector. The boundary condition at the outer edge can

be a choice between p = 0 (Dirichlet boundary condition) or ∂p
∂r

= 0 (Neumann boundary

condition). The choice has consequences for the r-velocity ur boundary conditions [36]. If

p = 0 at the outer edge, then ∂p
∂θ

= 0, and this eliminates the pressure-driven flow in the θ

direction (first term in Eq. (2.2b)). Then, if ∂h
∂θ
6= 0, i.e., texturing, at the outer edge, we have

∂uθ
∂θ
6= 0, and thus by mass conservation ∂ur

∂r
6= 0. This means the r velocity component can

be nonzero at the outer edge for the condition p = 0. This nonzero r velocity would cause

fluid to leave the disk-shaped textured domain (which was not observed experimentally),

and would also result in a nonzero shear stress component (τrz = η
(
∂ur
∂z

)
) on the outer free

surface. To enforce ur = 0 at the outer edge (no flux), the gradient of pressure in the r

direction at the outer edge must be zero (Eq. (2.2a)), i.e., ∂p
∂r

= 0, the Neumann boundary

condition, and ∂p
∂θ

is unspecified. The use of periodic and Neumann boundary conditions

results in a pressure field distribution quantified in terms of relative pressure with respect to

an arbitrarily fixed pressure at a certain location. We eliminated this arbitrary shift in the

pressure profile by constraining the average value of the pressure to be zero at the outer edge

of the texture. This effectively assumes no net pressure drop across the liquid-air interface,

e.g., due to surface tension at a curved interface (Laplace pressure drop). This was also

eliminated experimentally by calibrating and subtracting this effect [30].
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2.6 Design Optimization Method

2.6.1 Multiobjective Optimization

Multiobjective optimization involves minimization or maximization of a set of multiple

conflicting objective functions. The solution of such a problem is a set of nondominated

(Pareto-optimal) solutions, as opposed to a single optimum point as with single-objective

optimization. A design point is nondominated if one objective cannot be improved without

degrading at least one other objective [45].

Two primary classes of methods are used to solve multiobjective optimization problems

(MOPs): population-based or scalarization-based methods. Population-based methods, such

as nondominated sorting genetic algorithm II (NSGA-II) [46], solve the optimization problem

once, and generate a set of solutions that form the Pareto set (approximately). These

methods often improve the probability of finding global instead of local optima, but may

be computationally expensive due to a large number of function evaluations typically being

required [47].

The second class of methods converts a single MOP into a set of ‘scalarized’ single-objective

optimization problems (SOPs). These scalarization-based methods are often used in design

optimization studies due to their computational efficiency and simplicity [48]. The weighted-

sum method is the simplest scalarization approach, but cannot identify nondominated

solutions in nonconvex regions of a Pareto front. In addition, resulting nondominated

points are often clustered instead of uniformly distributed across the Pareto surface. These

limitations can be overcome through more sophisticated scalarization approaches, such as the

ε-constraint method [49], which is illustrated in Fig. 2.5 and described in Section 2.6.3. We

used the ε-constraint method in this study to enable the identification of nonconvex Pareto

fronts while supporting the use of computationally-efficient gradient-based optimization

methods.
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2.6.2 Multiobjective Optimization Formulation

The conflicting objectives of the full-film lubrication problem considered here are to (1)

minimize the shear load, represented as normalized apparent shear viscosity ηa/η0, and (2) to

maximize the normal force load FN . Friction is a significant source of energy loss for systems

involving lubricated hydrodynamic contacts. Friction can be reduced by increasing the gap

between the sliding contact surfaces. Increasing this gap, however, degrades load capacity

and sealing performance.

Fluid and pressure losses due to poor sealing are very undesirable outcomes, e.g., for

hydraulic power systems. Improved sealing requires increased normal force, but increased

normal force may increase frictional losses (e.g., fluid squeeze-out, higher contact friction, etc.)

[50]. Therefore, these two objective functions conflict, and the solution to this multiobjective

design problem will be a set of nondominated points that quantify trade-off options. Adding

certain types of textures to the full-film lubrication problem was found in previous studies

to simultaneously improve both of these objective functions. In other words, transitioning

to more effective texture classes shifts the Pareto surface toward more desirable objective

function values. These previous studies were limited to very simple uniform dimpled textures

[17–19, 21, 35, 36]. Here we aim to shift the attainable Pareto set even more by considering

more general texture designs. We also aim to gain fundamental insights about how best to

design surface textures for full-film lubrication applications.

The MOP formulation used here is:

minimize
x

{
ηa(x)

η0

,−FN(x)

}
(2.3a)

subject to xmin ≤ x ≤ xmax, (2.3b)

hmin ≤ hij(x) ≤ hmax, ∀{i, j} ∈ D, (2.3c)

where x is a vector of design variables that represents texture geometry (e.g., spline, etc.)
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and fluid properties are fixed. In this study, geometric parameterizations are formulated to

implicitly satisfy the periodic boundary conditions for the surface shape. For a given value

of x, the resulting geometric surface description is then used to determine high-resolution

surface height values: hij(x), ∀{i, j} ∈ D. The height values hij(·) quantify the surface shape

at mesh points needed for the pseudospectral method, D is the set of indices for all mesh

points in the design domain, and {i, j} are node indices in the two-dimensional mapped

mesh space. The objective functions ultimately depend on x. The height values, obtained

from x, are used within the simulation to obtain intermediate quantities needed to compute

the objective function values. The simulation solves for the pressure distribution p(r, θ) and

velocity field ur (r, θ, z), uθ (r, θ, z).

The first objective function, normalized apparent viscosity ηa(x)/η0, is calculated by a

ratio of apparent viscosity (ηa(x), depends on design) to actual fluid viscosity (η0, fixed,

depends on fluid selection) [51]. The apparent viscosity is defined from the torque M on the

rotating disk (integrated shear stress). For the rotating disk configuration, apparent viscosity

can be written as a function of disk torque M .

ηa = ηa (M) =
2h0

πR4
o

M

Ω
(2.4a)

where, M = Ntex

∫ ϕ/2

−ϕ/2

∫ Ro

Ri

τθz|z=0 r
2 dr dθ (2.4b)

and τθz|z=0 = −1

2

1

r

∂p

∂θ
h− η0

rΩ

h
(2.4c)

Ro is the outer radius of the textured disk; h0 is a controlled minimum gap height between

the fixed and rotating disks; Ω is the rotating disk angular velocity. Equation (2.4b) defines

how disk torque is calculated, which requires evaluation of the θ-direction (tangential) shear

stress (τθz(r, θ), where z is the vertical coordinate) at the rotating surface across the complete

domain. The shear stress calculation requires knowledge of the velocity field, which for the

Reynolds equation depends on gradients of the pressure field (∇p(r, θ)) across the entire
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Figure 2.5: The ε-constraint method converts a MOP to multiple SOPs. For each scalarized
problem, one objective is minimized while satisfying bound constraints on the other objectives.

computational domain of the flow field. For example, the shear stress in the theta direction

can be calculated as a function of ∂p (r, θ) /∂θ as given in Eq. (2.4c). The second objective

function, the negative normal force (−FN), is calculated by integrating pressure over the

domain, and then multiplying this value by the total number of disk sectors (Ntex) as shown

in Eq. (2.5).

FN = FN (p) = Ntex

∫ ϕ/2

−ϕ/2

∫ Ro

Ri

p r dr dθ (2.5)

2.6.3 ε-constraint method

The ε-constraint method is a type of scalarization technique for multiobjective optimization.

A MOP is transformed into a set of SOPs by retaining just one of the original objective

functions, and the remaining objective functions are converted to constraints that bound

these other objective function values [49]. Figure 2.5 illustrates how the ε-constraint method

minimizes the first objective function (f1(·)), while a constraint prevents the second objective

function (f2(·)) from exceeding a bound denoted by red horizontal lines in the objective

function space. The objective function space is a multidimensional space f ∈ Rm, where R

is the real number space, and m is the number of objective functions. This procedure is

repeated, each time with a different bound on f2(·). In the example shown in Fig. 2.5 the

optimization problem is solved five times to generate five Pareto-optimal solutions. This

strategy supports the use of existing single-objective optimization algorithms in solving
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MOPs, including the ability to resolve nonconvex portions of the Pareto frontier hypersurface

(a curved line for two objectives) and to generate well-distributed Pareto-optimal points. The

multiobjective formulation in Prob. (2.3) can be reformulated for the ε-constraint solution

as:

minimize
x

ηa(x)

η0

(2.6a)

subject to − FN ≤ εk (2.6b)

xmin ≤ x ≤ xmax (2.6c)

hmin ≤ hij(x) ≤ hmax, ∀{i, j} ∈ D (2.6d)

∀k ∈ {1, 2, . . . , np}, (2.6e)

where np is the number of Pareto-optimal points to solve for. One possible strategy, which is

used in this study, is to increment εi uniformly, i.e., εi+1 = εi + δ, where ε1 = (−FN)min and

δ = ((−FN)max − (−FN)min)/(np − 1).

2.7 Results and Discussion

2.7.1 Cylindrical Textures

A full factorial set of cylindrical texture designs, both in symmetric and asymmetric configu-

rations, was generated and evaluated to provide insight into how design variables influence

objective functions, and to assess trade-offs. Texture radius (Rt) and depth (h) are the design

variables used for the symmetric cylindrical texture study, and texture radius (Rt) and angle

(β) are the design variables used for the asymmetric cylindrical texture study. Figure 2.6

illustrates the contours of the two objective functions for both cases. Figures 2.6a-2.6b

corresponds to the symmetric texture, and Figs. 2.6c-2.6d correspond to the asymmetric

texture.
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Symmetric cylindrical texture design exploration study
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Asymmetric cylindrical texture design exploration study
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Figure 2.6: Objective function contours based on a comprehensive sampling of the cylindrical
texture design (symmetric and asymmetric textures). Trade-offs are apparent, and the Pareto
sets are illustrated in the figures. Asymmetry improves performance capability, especially in
terms of the normal force. Symmetric texture result of (a) normalized apparent viscosity
ηa/η0 [–] and (b) negative normal force −FN [N]. Asymmetric texture results of (c) normalized
apparent viscosity ηa/η0 [–] and (d) negative normal force −FN [N].

For the symmetric textures, shear load (normalized apparent viscosity) decreases with

“big” textures (i.e., larger radius and deeper depth) down to ηa/η0 = 0.714, while no normal

force is observed. Thus, the lowest shear load determines the optimal design (circles in

Fig. 2.7). For asymmetric textures, the angle β determines texture depth (β = 0 is a flat
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Figure 2.7: Comparison between the Reynolds equation and the Navier-Stokes equation
solutions in terms of the normalized apparent viscosity for the symmetric cylindrical textures
as a function of depth.

surface). The shear load is still minimized for “big” textures (i.e., a large radius and a large

β). The normal force is expected to be maximized at an intermediate angle β [30, 36], and

here this occurs at β = 3.6◦. Normalized shear load ranges from 0.794 to 0.902, and normal

force ranges from 0.212 to 0.762 [N]. Asymmetry is required to generate normal force.

Design variable bounds are chosen such that the Reynolds equation simulation results

reasonably agree with results based on the full Navier-Stokes equation. Figure 2.7 shows

both the Reynolds equation and the Navier-Stokes equation solutions using ANSYS Fluent

in terms of the normalized apparent viscosity for the symmetric cylindrical texture problem.

When the texture depth is 2 [mm] and 4 [mm], the solution of the Reynolds equation deviates

1.65% and 6.93%, respectively, from the solution of the full Navier-Stokes equation. Due to

this limitation in the Reynolds equation model, the depth variable should be constrained

to preserve accuracy. Furthermore, the full Navier-Stokes predictions indicate that the

normalized apparent viscosity plateaus beyond a certain depth (note that the plot is log-

scale). This means that the frictional performance cannot be enhanced more through increases

in depth beyond a certain value.

For both symmetric and asymmetric textures, the first objective function (minimizing

normalized apparent viscosity) has monotonic dependence on texture depth and radius, as
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shown in Figs. 2.6a and 2.6c (the objective decreases with increasing depth and radius). In

the asymmetric configuration study, the angle was varied between 0–20◦. Within this range,

increasing the angle corresponds to increased average texture depth, and increased lubricant

volume. This observation, along with the results presented here, indicates that the total

volume removed for a texture is important for reducing friction.

The behavior of the second objective function (maximizing normal force) is different

for the symmetric and asymmetric configurations. Symmetric cylindrical design variables

do not influence normal force because geometric symmetry in the sliding direction results

in negative and positive pressure distributions that countervail each other through the

expanding-contracting channel gap height. This matches the results reported in previous

experimental and theoretical studies that measurable normal forces were not detected in

symmetric cylindrical surface textures [30, 34].

The second objective function widely varies when changing the asymmetric configuration

design variables. Figure 2.6d shows that the normal force depends on both the texture angle

β and the radius Rt. In particular, the best normal force value occurred at a specific texture

angle value, β = 3.6◦, with the texture radius Rt at the upper bound, 4.0 [mm]. Moving

away from this point improves the normalized apparent viscosity, but degrades normal force.

Therefore, the result of this optimization study is a set of nondominated designs that express

the trade-off between these two objective functions. We can improve normal force through

asymmetric textures, but at the cost of degraded apparent viscosity.

Detailed insight into the flow physics (shear stress and pressure fields) are shown in

Figs. 2.8, 2.9, and 2.10. Figure 2.8 compares symmetric and asymmetric optimal designs

(minimum ηa/η0 for symmetric cylinder and maximum FN for asymmetric cylinder). The

pressure field results in Fig. 2.8c show that the pressure is counterbalanced across the vertical

line of symmetry. Thus, the overall pressure acting in the direction normal to sliding is

canceled, resulting in no normal force. This numerical result explains why design variables

for symmetrical textures do not affect the normal force, as shown in Fig. 2.6b.
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Symmetric texture simulation results
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Asymmetric texture simulation results
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Figure 2.8: Geometry, shear stress, and pressure fields of optimized cylindrical texture designs
in symmetric and asymmetric configurations. Symmetric texture results of (a) texture depth
profile −h [mm], (b) shear stress τ [kPa], and (c) pressure p [kPa] with Rt = 4 [mm], h = 2.5
[mm]. Asymmetric texture results of (d) texture depth profile −h [mm], (e) shear stress τ
[kPa], and (f) pressure p [kPa] with Rt = 4 [mm], β = 3.6◦.

For the asymmetric configuration, the pressure distribution is not counterbalanced and

can produce a net normal force. Here the positive overall pressure generates a positive normal

force. Figure 2.10 shows how the pressure distribution changes with angle β. Corresponding

surface texture shapes are given in Fig. 2.9. At the angle of maximum normal force (β = 3.6◦),

the range of pressures is at its maximum. The maximum normal force increases with β up to
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Surface texture geometry, asymmetric
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Figure 2.9: Geometric texture profile level-sets for asymmetric cylindrical textures with
various angles (β). Six β angles are sampled within the range of inclination limits. (a)
β = 0.9◦, (b) β = 1.8◦, (c) β = 3.6◦, (d) β = 7.2◦, (e) β = 10.8◦, (f) β = 14.4◦. Corresponding
pressure contours for the surface textures are given in Fig. 2.10.

β = 3.6◦, but then decreases with angle beyond β = 3.6◦. The interface between positive

and negative pressure consistently moves from left to right with increasing angle. This is

because when the angle of asymmetry is greater than 45◦, the resulting surface texture is

geometrically similar to a texture with an angle of (90◦ − β) with the flow in the opposite

direction, and it has been previously shown that when the direction of motion changes for

asymmetric surface textures, the sign of the normal force also changes [30, 35].
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Computed pressure fields for above surface textures

p

−4.2

−2

0

2

4
5.33

[kPa]

(a) (b) (c)

(d) (e) (f)

Figure 2.10: Pressure field level-sets for asymmetric cylindrical textures with various angles
(β). Six β angles are sampled within the range of inclination limits. (a) ηa/η0 = 0.942,
FN = 0.281 [N] for β = 0.9◦, (b) ηa/η0 = 0.920, FN = 0.573 [N] for β = 1.8◦, (c) ηa/η0 = 0.904,
FN = 0.755 [N] for β = 3.6◦, (d) ηa/η0 = 0.880, FN = 0.614 [N] for β = 7.2◦, (e) ηa/η0 = 0.854,
FN = 0.449 [N] for β = 10.8◦, (f) ηa/η0 = 0.829, FN = 0.333 [N] for β = 14.4◦. Corresponding
surface texture geometry shapes are given in Fig. 2.9.

2.7.2 Inclined plane spanning full sector area

Figure 2.11 shows a result of an inclined plane texture design that involves a slow expansion

followed by rapid contraction. In the pressure distribution contour plot (Fig. 2.11c), a thick

contour line (zero-pressure line) highlights the boundary between positive and negative
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Figure 2.11: Geometry, shear stress, and pressure field of the surface texture with inclined
plane spanning the full sector area. Asymmetric inclined plane texture result of (a) texture
depth profile −h [mm], (b) shear stress τ [kPa], and (c) pressure p [kPa].

normal force regions. The positive normal force region has a larger area than the negative

normal force region. Integrating this pressure distribution over the sector area results in a

positive net normal force. This is the general observation for cases where slow expansion is

followed by rapid contraction.

Figure 2.12a shows the Pareto fronts for the inclined plane and cylindrical textures. It

compares design solutions in the objective function space, including both symmetric and

asymmetric configurations for cylindrical textures. By expanding the inclined region of the

texture, both objectives can be improved simultaneously. It is clear that normalized apparent

viscosity is significantly reduced when shifting to the full inclined plane geometry. Since

this design representation has only a single design variable β, it is possible to visualize the

response of both objectives with respect to β, as shown in Fig. 2.12b. This plot shows a

clear conflict between the two objective functions. Negatively inclined angle β creates flow

in rapid expansion followed by slow contraction, while positively inclined angle β creates

flow in slow expansion followed by fast contraction. The sign of the inclined plane angle β

determines the sign of normal force FN , but the magnitude of the normal force is symmetric

between positive and negative inclined angle β. Furthermore, apparent viscosity ηa/η0 has
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Figure 2.12: Optimal designs for the cylindrical design exploration and the inclined plane
spanning the full sector area studies. (a) Optimal designs comparison. (b) β − ηa/η0 and
β − FN plots. The solid red stars in (a) is the Pareto set for the cylindrical texture identified
from the contours of Figs. 2.6c-2.6d. In (b), the two objectives (blue: ηa/η0, green: FN) are
plotted together as a function of β for the inclined plane design. The gray area indicates the
region of suboptimal designs.

even symmetry with respect to β. The region corresponding to Pareto-optimal designs is

identified by the white area in Fig. 2.12b. The gray area in this plot indicates the set of

suboptimal designs that are dominated by the Pareto-optimal designs.

2.7.3 Arbitrary continuous texture designs

The study is now extended to arbitrary continuous surface elevation changes parameterized

using spline interpolation. The objectives of this investigation include understanding how to

improve performance further through more sophisticated texture designs, and what physical

mechanisms make any improvements possible.

Using the coarse mesh described in Section 2.4 and Fig. 2.3a, designs are represented

using a (N + 1) ×N matrix of surface elevation values, accounting for periodic boundary

constraints. For the reference case this matrix has dimension 6× 5, with a resulting design
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Symmetric arbitrary surface texture design results
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Figure 2.13: Optimal texturing of an arbitrary but symmetric surface approaches a flat plate;
symmetric texturing is unable to produce normal force. The optimal solution maximizes the
gap everywhere to decrease the viscous shear load. Arbitrary but symmetric texture results
of (a) texture depth profile −h [mm], (b) shear stress τ [kPa], and (c) pressure p [kPa].

representation dimension of 30 for asymmetric arbitrary continuous surface texturing. We first

consider symmetric designs (Fig. 2.4d), which have a lower design representation dimension

due to the symmetry constraint (d(5 + 1)2 /2e = 18). Then, we allow asymmetric designs by

removing the symmetry constraint (Fig. 2.4e). We also vary the design space resolution from

N = 3 to N = 7 to examine the dependence of optimal performance on resolution.

Figure 2.13 shows the optimal design with the symmetry constraint. It is nearly a flat

plate that maximizes the allowable gap height. As with the symmetric cylindrical texture

result, the pressure distribution is balanced, and the normal force is zero. As before, the

problem reduces to a single-objective function problem due to symmetry and insensitivity

of normal force to texture design. This is a significant result. Even with arbitrary surface

topography, symmetry must be broken to generate a normal force from textured surfaces.

Gap reduction has no benefit in terms of normal force, so the optimization algorithm is

free to minimize shear by setting the surface elevation to the maximum gap at all locations,

resulting in the flat surface shown in Fig. 2.13. Near r = 0 the surface elevation does increase
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Surface texture geometry, asymmetric
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Figure 2.14: Geometric texture profile level-sets for optimized surface textures with spline
design representation (spline resolution N = 5). Asymmetry is permitted. Six designs are
uniformly sampled from 27 designs in the Pareto set to illustrate trends. These Pareto-optimal
designs are denoted as blue squares in Fig. 2.16. (a) Design #4, FN > 0.75 [N], (b) Design
#8, FN > 1.75 [N], (c) Design #12, FN > 2.75 [N], (d) Design #16, FN > 3.75 [N], (e)
Design #20, FN > 4.75 [N], (f) Design #24, FN > 5.75 [N]. Corresponding pressure contours
for the surface textures are given in Fig. 2.15.

slightly. This is because the sensitivity of the normalized apparent viscosity with respect to

gap height is negligible in this region. We found that a completely flat surface enhances the

objective value by only 0.016% compared to the optimization solution.

When the symmetry constraint is removed, the sliding surface textures can generate
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Computed pressure fields for above surface textures
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Figure 2.15: Pressure field level-sets for optimized surface textures with spline design
representation (spline resolution N = 5). Asymmetry is permitted. Thick contour lines
denote zero pressure (boundaries between negative and positive pressures) locations. These
Pareto-optimal designs are denoted as blue squares in Fig. 2.16. (a) Design #4, ηa/η0 = 0.299,
FN = 0.750 [N], (b) Design #8, ηa/η0 = 0.394, FN = 1.750 [N], (c) Design #12, ηa/η0 =
0.469, FN = 2.750 [N], (d) Design #16, ηa/η0 = 0.538, FN = 3.753 [N], (e) Design #20,
ηa/η0 = 0.607, FN = 4.750 [N], (f) Design #24, ηa/η0 = 0.709, FN = 5.752 [N]. Corresponding
surface texture geometry shapes are given in Fig. 2.14.

nonzero normal forces as with the asymmetric cylindrical texture designs. Figures 2.14

and 2.15 show asymmetric texture geometries and the corresponding pressure fields for six

different Pareto-optimal designs. Designs are displayed in order of increasing normalized

apparent viscosity value (and also increasing normal force). The designs shown in Fig. 2.14
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are sampled uniformly from the Pareto set obtained by solving Eq. (2.6) with splines N = 5.

The corresponding Pareto set is shown as blue squares (the reference case) in Fig. 2.16, which

is observed to be nonconvex in the objective-function space. Using an approach such as the

ε-constraint method was essential for resolving nonconvex portions of the Pareto set.

In some portions of the design domain, the texture slope limitation has a significant

impact on results. It may be helpful (e.g., for manufacturability) to add constraints to limit

texture slope in further design studies. This could be implemented approximately using

linear constraints on design variables. With the 30-variable spline representation, this slope

constraint strategy requires 2 × (6− 1)2 = 50 linear constraints. All spline interpolated

studies presented here use these linear constraints to limit the inclined angle of the textured

profile.

The geometric result shown in Fig. 2.14a-2.14f converged to a shape that is similar to

a spiral blade. The spiral blade-like texture profile has a portion colored in yellow (higher

heights, Figs. 2.14a-2.14f) that acts as a converging channel directing flow radially inward.

This increases pressure near the disk center and generates a positive net normal force, as

shown in Fig. 2.15. This mechanism helps explain how the asymmetric spiral blade-like

surface design can help increase normal force in this rotational configuration. The directed

flow toward the disk center may also help reduce leakage, an important practical consideration

for fluid power systems. This increased pressure at the center helps support axial loads and

load applied on the sealing components, while the low hydraulic pressure near the outer rim

of the disks helps to contain the fluid within the gap between sliding disks. These design

results match the known previous experimental observation that a spiral groove enhances

load-capacity for a parallel flat surface bearing configuration [22].

2.7.4 Comparison of optimal designs

Pareto-optimal designs shown in Fig. 2.16 show how the objective functions can be improved

significantly by transitioning from simple dimpled textures to arbitrary continuous texture
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Figure 2.16: Comparison of optimal designs in the objective function space for all design
studies presented in this study. Performance indices are improved significantly by increasing
design flexibility via the texture surface representation.

geometries. Note that the vertical axis is FN as opposed to −FN , to be more intuitive, so

points closer to the upper left are more desirable. Only normalized apparent viscosity (ηa/η0)

changes in the symmetric cases; the optimal solution maximizes the operating gap to the

greatest extent possible. For the asymmetric case, switching from dimpled cylindrical to

arbitrary spline-based textures shifts the Pareto sets significantly toward the upper left,

indicating roughly an order of magnitude performance improvement while enforcing the

manufacturability constraint. Enhanced normal force generation is observed as more spline

control points are added as design variables (increasing texture design resolution). However,

in the region of nearly zero normal force, increasing the number of spline control points,

(N + 1)×N , does not provide a meaningful improvement in reducing the normalized apparent

viscosity, because the optimal surfaces are flat with a maximum gap height value.

Figure 2.17 compares texture profile level-sets for full-disk geometries at FN = 3 [N]. For
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(a) (b) (c)

(d) (e)

Figure 2.17: Comparison of geometric texture profile level-sets of optimal designs for N =3
to 7 at FN = 3 [N]. As design resolution increases, the thickness of the blade-like feature
becomes sharper, and a lower normalized apparent viscosity value can be achieved. (a)
N = 3, ηa/η0 = 0.6015. (b) N = 4, ηa/η0 = 0.5160. (c) N = 5, ηa/η0 = 0.4857. (d) N = 6,
ηa/η0 = 0.4439. (e) N = 7, ηa/η0 = 0.4237.

each disk level-set, the corresponding value of normalized apparent viscosity is given. As

Fig. 2.16 illustrated previously, increased design mesh resolution results in optimal designs

with lower normalized apparent viscosity values. While the same level of the normal force

is generated (FN = 3 [N]) by these five designs, the blade shape becomes sharper, and the

landscape profile becomes more detailed as the design mesh becomes finer. Figure 2.18

illustrates comparisons of optimal cross-sectional depth profiles for spline-based designs across

a range of texture resolutions (N = 3, 5, 7) for four different radial positions r. Among

solutions in the Pareto set, the optimal design point generating the normal force of FN = 3

[N] is chosen for this comparison. At all three resolutions, the same trend is observed. Namely,
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Figure 2.18: Comparison of depth profiles: cross-sectional view of optimal designs, spline
design representation cases with N =3, 5, 7, and FN = 3 [N]. The horizontal axis indicates
the angular (θ) location within a sector, and vertical axes correspond to texture elevation.
Each subfigure corresponds to a different spline N . Positive thrust occurs when the opposing
upper flat surface moves in the positive θ-direction.

texture profiles consist of asymmetric expansion-contraction channels. In addition, these

periodic asymmetric profiles shift to the right with decreasing radial position, resulting in

spiral texture geometries. While low-dimension spline representations (N = 3) produce

texture geometries that can capitalize on the physical effects discussed above, increasing

N results in complex waviness in designs and improved performance. Higher-resolution

representations, however, increase computational expense (discussed next).
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Table 2.3: Comparison of average computation cost per single scalarized optimization problem
and system performance obtained from ε-constraint method and interior-point (IP) algorithm

Order of design mesh
(number of variables)

N = 3
(4× 3)

N = 4
(5× 4)

N = 5
(6× 5)

N = 6
(7× 6)

N = 7
(8× 7)

Computation time per
single IP run [min]

3.7 7.3 12.2 17.5 25.1

Normal
force
FN [N]

at ηa/η0 = 0.3 0.54 0.62 0.76 0.91 1.08

at ηa/η0 = 0.5 2.02 2.78 3.21 3.84 4.23

at ηa/η0 = 0.7 4.05 5.02 5.67 6.59 6.89

Apparent
viscosity
ηa/η0 [–]

at FN = 1 0.38 0.35 0.33 0.31 0.29

at FN = 3 0.60 0.52 0.49 0.44 0.42

at FN = 5 0.86 0.70 0.63 0.58 0.56

2.7.5 Computational expense comparison

All problems were solved using dual Intel® Xeon® X5650 CPUs with a total of 12 physical

cores. Gradient evaluation within the interior-point algorithm [52] is computed in parallel

to utilize all CPU cores. All cases converged to solutions with a function value tolerance of

10−8. A summary of the average computation time for single scalarized problems is given

in Table 2.3. Computation time for the complete MOP is approximately the number of

Pareto-optimal points for a given curve in Fig. 2.16, multiplied by the average computation

time for each interior-point (IP) solution reported in Table 2.3.

To compare the computational cost across the range of spline design resolutions, Table 2.3

lists the cost per single IP run (i.e., the time to find one point in the Pareto set). The

computation time required to calculate both objective functions for a single design was

typically less than 0.1 seconds. This is independent of N , because the computational domain

(Fig. 2.3b) is the same for all design resolutions N . The solution time for a single IP run,

however, increases significantly with N . For higher-resolution cases (e.g., N = 5, 6, 7),

functional performance increases as shown in Fig. 2.16, but this must be weighed against

the increase in computational expense quantified in Table 2.3. An appropriate choice may
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depend on a number of factors, including application and whether the studies are supporting

early- or late-stage design decisions.

2.7.6 Limitations

The design studies here are performed under certain assumptions and simplifications described

in Sections 2.3, 2.4, and 2.5, which place inherent limitations on the results of this design

study. These limitations are due to the simplification of governing equations, properties of

certain texture design representations, and limited design representation resolution.

First, the Reynolds equation model is valid only when the aspect ratio of the confined

flow is sufficiently wide (Fig. 2.7), but is favorable for design optimization studies due

to the associated computational efficiency. Thus, design study results are limited by the

approximate simulation model, which may dominate true physical limitations. In addition,

cavitation is not considered in our Reynolds equation model. Although some previous studies

accounted for cavitation effects [21, 22, 25, 40, 53], it was not observed in our experiments [30].

Cavitation effects could be included in future work using the same optimization framework

presented here with an appropriate system model.

Second, our study did not look at the coefficient of friction µ∗, which is one popular

way to identify an optimal design. The coefficient of friction is defined as the shear stress

divided by the normal force. This measure is equivalent to the value of our first objective

ηa/η0 divided by our second objective FN . The resulting optimal design using µ∗ as the

objective function would produce a single point on the Pareto front generated here. In more

general design problems, design utility may not be represented accurately by the coefficient

of friction. For example, if small FN is needed but reducing ηa/η0 is more important, this is

not captured by minimizing the coefficient of friction.

Third, design studies are limited to a sector (one-tenth of a full disk) with a rotational-

periodic boundary repeated in every φ = 2π/10 [rad]. Although periodic boundary conditions

approximate accurately full disk behavior, the assumption of periodicity implicitly constrains
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the designs explored. In addition, different sector sizes (e.g., {2π/6, 2π/8, 2π/12} [rad], etc.)

may produce different results and new insights. Future studies should investigate different

sector sizes, as well as the elimination of the periodic sector assumption and design the full

disk texture directly. Furthermore, different kinematics (e.g., linear sliding motion) other

than the rotating disk configuration will have different optimal designs since pressure cannot

be built up near a center-of-rotation region. Future studies should address different practical

configurations.

Fourth, while performance was improved by moving to a free-form texture design repre-

sentation, spline parameterization still requires at least tens of design variables. Optimization

studies were performed using efficient gradient-based methods with limited multi-start to

balance computational expense and the improving probability of finding global optima. More

effective global methods may be impractical due to the problem dimension, and because the

simulation is utilized here as a black-box model.

Increasing design resolution using the current optimization strategy may be impractical,

but the increased resolution is required to investigate true performance limits accessible via

texture design. Several limitations were observed when using the current low-dimension

texture design representation, including a generation of very sharp edges or sudden nonsmooth

slope changes. Alternative optimization strategies that support higher-resolution design

representation should be investigated. One possible strategy is to use design abstraction

techniques, such as generative design algorithms [54], image warping methods [55], or other

surface representation techniques [56]. A G′, G′′ using the simulation mesh values hij may be

another promising strategy, but a practical solution will require novel large-scale optimization

formulations that capitalize on problem structure to manage the significantly increased

problem dimension (e.g., thousands of optimization variables). Ongoing work is exploring

the possibility of using convex programming techniques to support significant increases in

design resolution while maintaining computational tractability (e.g., [57]). One such strategy,

based on SLP, was investigated and is presented in the next chapter.
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2.8 Conclusion

Full-film lubrication problems have been studied extensively in the tribology community, often

with the objective of improving normal load capacity and decreasing shear load resistance.

Using textured contact surfaces is known to be effective for reducing frictional energy loss.

More recently, an experimental study has revealed that asymmetric depth profile texture

patterns can improve performance further by generating net normal forces to carry higher

loads [30]. Based on these previous discoveries pertaining to full-film lubrication, this study

presented an investigation of how the transition to more sophisticated texture designs can

improve performance in exceptional ways, and has offered insights into the underlying

mechanisms that enable these improvements. The studies presented here focused on the

simultaneous improvement of apparent viscosity and normal force.

Predefined texture shapes, such as cylindrical dimples, limit potential performance

improvements that are achievable with more general surface texture design. A general design

pattern was clearly present among the Pareto-optimal results for the asymmetric spline-based

design study. The resulting designs resemble a spiral blade, and observations of the flow and

pressure fields provide insight into the mechanisms leveraged by these designs to improve

performance.

The ultimate objective of these and other related efforts is to realize new levels of perfor-

mance and efficiency for fluid power systems and to reveal physical and design principles

that support these improvements. Ongoing efforts complement the results presented here,

including the development of new models and solution techniques that will enable the

computationally-efficient design of very high-resolution texture geometries by capitalizing on

problem structure. The next steps include investigation of full-film lubrication problems in

configurations that are more representative of practical engineering systems, investigating

texture design representations based on generative algorithms, incorporating manufactura-

bility and cost considerations, and transitioning from Newtonian to non-Newtonian fluid
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system models. For example, a linear sliding motion can be another configuration to represent

practical reciprocating contact surfaces [58]. Different targets for normal load or sliding speed

may affect optimal solutions [59]. Optimization results have provided a rich set of design

data from which qualitative design insights can be extracted. Future work will iteratively

deepen, validate, and enhance this qualitative understanding, leading to valuable design

knowledge that may impact technologies, such as bearing systems, reciprocating mechanisms

(e.g., automotive engines), energy systems, and fluid power systems.
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Chapter 3

Efficient Design of Textured Surface
Lubrication Using Linearization1,2

3.1 Summary

Surface textures reduce friction in lubricated sliding contact. This behavior can be modeled

using the Reynolds equation, a single partial differential equation (PDE) that relates the

hydrodynamic pressure to the gap height. In a previous study, a free-form texture design

optimization problem was solved based on this model and two competing design objectives.

A pseudospectral method was used for the PDE solution, which was treated as a black box in

the optimization problem. This optimization implementation did not exploit model structure

to improve numerical efficiency, so design representation fidelity was limited. Here a new

strategy is introduced where design representation resolution and computational efficiency

are simultaneously enhanced. This is achieved by introducing a new optimization variable

involving both the pressure gradient and the cube of gap height at each mesh node location,

and it solves the flow and texture design problems simultaneously. This transformation

supports the linearization of the governing equations and design objectives. The sequential

linear programming (SLP) is used with the ε-constraint method to generate Pareto-optimal

texture designs with high resolution and low computational expense. An adaptive trust-region

is used along with the linear program (LP) to manage linearization error based on quantified

1Part of the content reported in this chapter is presented in (Lin, Lee, Schuh, Ewoldt, and Allison. Efficient
optimal surface texture design using linearization. In Schumacher et al. (ed.) Advances in Structural and
Multidisciplinary Optimization: Proc. WCSMO-12 :632-647, Springer), ©2018 by the authors.

2Mr. Yong Hoon Lee, Mr. Chendi Lin, and Dr. Jonathon Schuh collaboratively derived the formulation
based on Dr. Jonathon Schuh’s Reynolds equation solver. Mr. Yong Hoon Lee also contributed with the
numerical optimization techniques.
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solution improvement. Comparing to the nonlinear program (NLP) implementation, the

solutions converged to a set of Pareto-optimal points that is similar to the results of the NLP.

Still, some solutions are slightly suboptimal in a few regions. The SLP method does not

meaningfully enhance the performance of the design, but improves the computational speed

significantly, up to 8.4 times faster than the NLP method.

3.2 Introduction

Surface textures reduce friction in lubricated sliding contact [16]. In many practical engineer-

ing applications with a lubricated sliding contact, reducing energy loss, wear, friction-induced

noise, and improving compactness are important design objectives [4, 60]. Since the roughness

of a sliding surface primarily affects friction performance, a comprehensive set of studies has

been conducted to understand how changes in surface roughness can reduce friction. Many

existing studies focus on creating an array of dimples with circular or other shapes. It has

been demonstrated that circular micro dimples fabricated using abrasive jet machining and

laser beam machining with different sizes can help reduce lubrication friction [15]. A theoret-

ical model of micro-dimple hydrodynamics has been introduced and verified experimentally,

showing that surface microstructures enhance frictional performance [16]. Previous studies

have not been limited to only circular dimple shapes. More recent studies show that other

specific surface texture top profile shapes can further improve frictional and load-carrying

performance [20, 22, 61], while other studies also investigated the effect of depth profile

changes as well [21, 30].

A series of recent studies tried to further enhance the frictional performance and load-

carrying capacity by expanding the surface texture to the free-form design of the full interface

surface and led to the improvement of both objectives by an order of magnitude [4, 62].

These studies involved a reduced-dimension texture design parameterization as a strategy to

improve computational efficiency for optimization studies, at the expense of reduced texture
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design resolution. The optimization studies were based on a Reynolds equation model, which

is the simplest option for predicting the frictional performance of lubricated sliding contacts.

Several earlier numerical studies have been performed using the Reynolds equation to examine

the effects of surface textures on friction reduction [53, 63, 64]. However, solving a fluid

flow requires a computationally expensive solution of a nonlinear system of equations (even

when based on a simplified governing equation, such as the Reynolds equation). Here a more

efficient method for solving the texture optimization problem for lubricated sliding contact is

proposed by linearizing the Reynolds equation and sequentially updating the approximated

linearization.

3.3 Problem Formulation

3.3.1 Problem Statement

Using the rotational tribo-rheometer setup presented in Chapter 2, Fig. 2.1a, we are designing

a two-dimensional texture profile for the fixed bottom plate. The nominal gap height between

the top and bottom plates is fixed, and the torque and normal force on the moving flat surface

is measured [30]. This study aims to decrease friction within the system while simultaneously

increasing the normal force produced by the surface texture. Recent studies demonstrated

that these two objectives could be achieved with asymmetric depth profile surface textures

[4, 30, 36]. In this study, we optimize the height profile of the surface texture using a

computationally-efficient linearization technique applied to the Reynolds equation. The

design variable (gap height) has the same dimensions as the computational mesh, i.e., we are

designing the gap height at each mesh point instead of using the reduced-dimension design

representation of Chapter 2. Figure 2.1a shows the front view of the experimental setup of

this study. Two disks are separated by Newtonian fluid, with the flat disk rotating on the

top, and the textured surface fixed at the bottom. To reduce the computing complexity, we

divide the full disk into Ntex periodic sectors. In this study, the choice of Ntex will affect our
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(a) (b)

Figure 3.1: Benchmark design used as a starting design point for optimization studies
presented in this chapter. This benchmark design is the optimal surface texture profile
obtained in the study presented in Chapter 2 [4]. The corresponding normal force is
FN = 7.03 N, and the normalized apparent shear viscosity is τ = 0.737 (normalized). (a)
Surface for a single disk sector of the benchmark design. (b) Full disk image of the benchmark
design.

results, and we chose Ntex = 10. Figure 2.1b is a closer view of the design domain. The top

plate is flat, rotating in the θ-direction, while an arbitrary textured surface is fixed at the

bottom. Eventually, the texture surface design will be mapped into a full disk by applying

the periodic boundary condition.

The surface texture profile when FN = 7.03 and τ = 0.737 from Lee et al. [4] is used

as the starting design point for all optimization studies presented here. This benchmark

design is shown in Fig. 3.1. By applying different upper bounds on apparent shear viscosity,

we can obtain a set of optimal points. This procedure will be discussed in more detail in

Sections 3.3.3, 3.3.4, and 3.5.

3.3.2 Numerical Model for Texture Surface Hydrodynamics

Here we assume that (1) the operating lubricant can be modeled as an incompressible

Newtonian fluid with constant viscosity, (2) the flow occurs at low Reynolds numbers so that
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inertial terms can be neglected, and (3) the gap height is small compared to other length

scales in the problem so that gradients in the flow direction can be neglected. Based on these

assumptions, the system may be modeled using the Reynolds equation [42] in cylindrical

coordinates, given as:

1

r

∂

∂r

(
rh3∂p

∂r

)
+

1

r

∂

∂θ

(
h3

r

∂p

∂θ

)
= 6ηΩ

∂h

∂θ
(3.1)

where p is the pressure, h is the gap height, η is the fluid viscosity, and Ω is the angular

velocity. The Reynolds equation is a linear, second-order partial differential equation with a

non-constant coefficient for pressure that satisfies both conservation of mass and momentum

equations. The velocity boundary conditions used to derive Eq. (3.1) are given as:

at z = 0 : vθ = rΩ , and vr = vz = 0 (3.2a)

at z = h : vθ = vr = vz = 0. (3.2b)

Integrating conservation of momentum and applying boundary conditions produces the

velocity field, given as:

vr =
1

2η

∂p

∂r

(
z2 − zh

)
(3.3a)

vθ =
1

2η

1

r

∂p

∂θ

(
z2 − zh

)
+ rΩ

(
1− z

h

)
. (3.3b)

Schuh et al. [36] developed the Matlab� code for solving Eq. (3.1) using the pseudospectral

method, which transforms the partial differential equation (PDE) into an approximate system

of algebraic equations, given as:

Kp = f, (3.4)
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where:

K =
−ϕ

Ro −Ri

(I ⊗D)T (M ⊗M ) (I ⊗R)H3 (I ⊗D)

− (Ro −Ri)

ϕ
(D ⊗ I)T (M ⊗M)

(
I ⊗R−1

)
H3 (D ⊗ I) (3.5a)

f =3ηΩ (Ro −Ri) (M ⊗M ) (I ⊗R) (D ⊗ I)h. (3.5b)

Here, ϕ is the total angle for a periodic sector, Ro is the outer radius, Ri is the inner radius,

I is the identity matrix, D is a full matrix containing coefficients for approximating the

required derivatives, M is a diagonal matrix of Gauss-Lobatto-Legendre (GLL) quadrature

weights, R is a diagonal matrix of radius values from Ri to Ro, h is a vector, reshaped

from the matrix containing the gap height values at each grid point, H is a matrix with

diagonal elements from the vector h, and ⊗ is the Kronecker product. It was assumed in this

derivation that the gap height is periodic in the θ-direction.

A previous design optimization study, presented in Chapter 2, used h as an input to

Eq. (3.4), which was then solved to obtain the pressure field, and the velocity field is

computed using this pressure field [4]. These fields were then used to determine the objective

functions for a given gap height profile (load capacity and a friction metric). In the previous

strategy, the Reynolds equation solver was treated as a black-box simulation. Each new

design candidate tested by the optimization algorithm required simulation, contributing to

significant computational expense as the Reynolds equation structure was not leveraged for a

more efficient solution. However, if we examine Eq. (3.4) carefully, observations reveal an

opportunity to capitalize on problem structure, utilizing both the simultaneous analysis and

design (SAND) method [1, 2] and linearization. The SAND formulation involves simultaneous

Reynolds equation solution and gap height (texture design) determination. The first step is
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to rewrite Eq. (3.4) in the following form, given as:

[
Kr Kθ

]h3 � pr
h3 � pθ

 = Ah, (3.6)

where pr is the gradient of the pressure in the r-direction, pθ is the gradient of pressure in

the θ-direction, � is element-wise multiplication (Hadamard product), and:

Kr =
−ϕ

Ro −Ri

(I ⊗D)T (M ⊗M ) (I ⊗R) (3.7a)

Kθ =
− (Ro −Ri)

ϕ
(D ⊗ I)T (M ⊗M)

(
I ⊗R−1

)
(3.7b)

A = 3ηΩ (Ro −Ri) (M ⊗M ) (I ⊗R) (D ⊗ I) . (3.7c)

In Eq. (3.6), the design variable h appears on both the left- and the right-hand side of the

equation, and the equation depends nonlinearly on the gap height. Using a SAND strategy,

we combine our design and analysis variables into a new independent optimization variable,

denoted x here, given as:

x =

[
h, pr, pθ

]T
. (3.8)

To make Eq. (3.6) linear in our design variable, we linearize h3 � pr and h3 � pθ near

their tangent planes using a multivariate Taylor series expansion, given as:

h3 � pr ≈ h0
3 � pr0 + 3h0

2 � pr0 �
(
h− h0

)
+ h0

3 �
(
pr − pr0

)
(3.9a)

h3 � pθ ≈ h0
3 � pθ0 + 3h0

2 � pθ0 �
(
h− h0

)
+ h0

3 �
(
pθ − pθ0

)
, (3.9b)

where h0 is a nominal gap height vector, and pr0 is the pressure gradient in the r-direction,

and pθ0 is the pressure gradient in the θ-direction for the nominal gap height. Substituting

Eqs. (3.9a) and (3.9b) into Eq. (3.6) using our new design variable x, produces the following
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formulation, after simplification, given as:

[Kr Kθ

]3H2
0Pr0 H3

0 0

3H2
0Pθ0 0 H3

0

− [A 0 0

]x =

[
Kr Kθ

]3h0
3 � pr0

3h0
3 � pθ0

 (3.10)

where H2
0Pr0 is a diagonal matrix with the elements h0

2� pr0 , the diagonal matrix H2
0Pθ0 is

composed of elements h0
2 � pθ0 , H3

0 is a diagonal matrix with the elements h0
3, and 0 is the

zero-matrix with appropriate dimensions. Equation (3.10) can be rewritten in the following

compact form, given as:

K̂x = f̂ . (3.11)

All of the design variables appear only on the left-hand side of Eq. (3.11), and the

right-hand side is known after the nominal gap height profile is given. Therefore, solving

Eq. (3.11) (with appropriate pressure boundary conditions [36]) produces the associated

pressure field gradients for a given gap height design.

Our two objective functions are the normal force FN and the nondimensional shear stress

τ ∗, which is equivalent to the apparent viscosity normalized by the fluid viscosity (ηa/η0).

The normal force is obtained by integrating the pressure field. Solving Eq. (3.11), however,

produces pressure field gradients. The pressure field can be obtained from its gradient using:

I ⊗D

D ⊗ I

 p =

pr
pθ

 . (3.12)

Once the pressure has been obtained, the normal force on the flat plate is calculated using:

FN ≡
∫ 2π

0

∫ Ro

Ri

prdrdθ = Ntex

∫ ϕ/2

−ϕ/2

∫ Ro

Ri

pr drdθ, (3.13)
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where the total number of periodic cells on the thrust bearing is:

Ntex =
2π

ϕ
. (3.14)

This is calculated numerically using:

FN = Ntex

(
ϕ (Ro −Ri)

4

)
(w ⊗ w)T (I ⊗R) p, (3.15)

where w is the vector of GLL quadrature weights.

Pressure derivatives are used to determine the velocity using Eqs. (3.3a) and (3.3b), and

derivatives of the velocity components are used to determine the shear stress on the top plate,

given as:

τzθ|z=0 = η

(
∂vθ
∂z

+
1

r

∂vz
∂θ

)∣∣∣∣
z=0

. (3.16)

Substituting Eq. (3.3b) into this equation produces:

τzθ|z=0 = −
(

1

2r

∂p

∂θ
h+ η

rΩ

h

)
. (3.17)

The torque M on the flat plate is calculated from the shear stress, given as:

M ≡
∫ 2π

0

∫ Ro

Ri

(τzθ|z=0) r2drdθ = Ntex

∫ ϕ/2

−ϕ/2

∫ Ro

Ri

(τzθ|z=0) r2 drdθ, (3.18)

which is calculated numerically as:

M = Ntex

(
ϕ (Ro −Ri)

4

)
(w ⊗ w)T

(
I ⊗R2

)
τzθ. (3.19)

The torque can then be used to determine the nondimensional shear stress (objective function)
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as follows:

τ ∗ ≡

2

πR3
o

M

ηRoΩ

h0

=
2h0

ηπR4
o

M

Ω
. (3.20)

Using the parameters defined in the design variable vector x, we can rewrite Eq. (3.17) to

obtain:

τzθ|z=0 = −
(

1

ϕr
pθh+ η

rΩ

h

)
, (3.21)

where we have used:

∂p

∂θ
=

2

ϕ
pθ. (3.22)

Equation (3.21) is nonlinear in h and pθ. Since we previously linearized our problem

about h0 and pθ0 , we must also linearize τzθ about h0 and pθ0 for our analysis to be consistent.

Performing Taylor series expansions for the nonlinear terms produces:

pθh = pθ0h0 + pθ0 (h− h0) + (pθ − pθ0)h = −pθ0h0 + pθ0h+ pθh0, (3.23a)

1

h
=

1

h0

− 1

h2
0

(h− h0) =
2

h0

− 1

h2
0

h, (3.23b)

which when substituted back into Eq. (3.21) yields:

τzθ|z=0 = −
((

pθ0
rϕ
− ηrΩ

h2
0

)
h+

h0

rϕ
pθ −

pθ0h0

rϕ
+ 2η

rΩ

h0

)
. (3.24)

This is calculated numerically using:

τzθ = −
[
Bh 0 Bpθ

]
x− c, (3.25)

where:

Bh =
1

ϕ
Pθ0
(
I ⊗R−1

)
− ηΩ (I ⊗R)

(
H2

0

)−1
(3.26a)
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Figure 3.2: Schematic showing how the ε-constraint method is used for this problem. We
optimize one objective function (here, maximizing normal force) while constraining the other
metric using an inequality constraint (here, constraining apparent shear viscosity to be less
than a certain value). The incrementally varied maximum bound on shear load is shown
as a dashed line. Open circles are the optimal design points obtained from each of the
optimization subproblems. The gray circle is an example of a dominated (suboptimal) design
point. These optimal designs are on the Pareto frontier, shown with a thick solid black line.

Bpθ =
1

ϕ
H0

(
I ⊗R−1

)
(3.26b)

c = − 1

ϕ
Pθ0

(
I ⊗R−1

)
h0 + 2ηΩ (I ⊗R)h0

−1, (3.26c)

and Pθ0 is a diagonal matrix of elements pθ0 , H
2
0 is a diagonal matrix of elements h0

2, and

h0
−1 is an element-wise inversion of h0. Equation (3.25) can be used with Eqs. (3.19) and

(3.20) to calculate the nondimensional shear stress.

3.3.3 Multiobjective Optimization

Since we are solving a multiobjective problem with two competing objective functions, the

solution sought is a Pareto frontier that expresses the tradeoff between these two objectives

[48]. The ε-constraint method [49] is a commonly used technique to convert a multiobjective

problem into a set of optimization problems with single objective functions. This is done by
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optimizing a single objective function while using the other objectives functions as inequality

constraints with bounds. By adjusting these bounds for the objective functions posed as

inequality constraints, we generate a set of problems. The solution of each of these problems

produces a single point on the Pareto frontier.

Figure 3.2 demonstrates the conflict between our two objectives, (1) minimizing the shear

load, which is represented by the apparent shear viscosity normalized by the fluid viscosity

(expressed as ηa/η0), and (2) maximizing the normal force. Both these objectives help reduce

friction in this lubrication problem, which is the main source of energy loss. From the Pareto

frontier, we can tell that, as normal force FN increases, the apparent shear stress increases

inevitably. The feasible region for our design objectives is shaded; all optimal designs lie

within this region. We optimized the normal force with respect to a given shear load, which

was used as our inequality constraint. The dashed black lines are different shear load values,

and the white circles are the optimal normal force values obtained for each given shear load

bound. The open circles lie on the boundary of the attainable set. Connecting the white

circles gives our Pareto front of optimal solutions, which is shown with the solid black line.

The gray circle at the top right is an example of a dominated point ; it is dominated because

feasible solutions exist where both objectives can be improved simultaneously, as evident in

Fig. 3.2. The texture designs that give this Pareto front are the optimal texture designs.

3.3.4 Trust-Region and Step Size

An adaptive trust-region method is essential to control linearization error and helps improve

solution convergence [65, pp. 303–308]. Here we implement a trust-region method that

involves the following steps described below to obtain the solution iteratively.

Step 1. Initialize Parameters

� Specify initial starting point x0 and initial trust-region radius ∆0.
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For gap height h, the initial trust-region radius is set to be 10% of the size of gap height

bounds at each grid point, and for the gradient of pressure values p
r

and p
θ
, the initial

trust-region radius is set to be 100 [Pa].

� Set the trust-region constants, 0 < η1 < η2 < 1 and 0 < γ1 < 1 < γ2.

In this study, we set η1 = 0.01, η2 = 0.9, γ1 = 0.5 and γ2 = 1.5. However, the algorithm

is not sensitive to the choice of parameter values [65].

� k = 0.

� Compute f (xk) at the initial point x0, set m0 (x0)← f (x0).

Step 2. Linear program (LP) Solution

� Solve the LP problem min {mk (x∗)} to get sk = x∗ − xk.

Based on the linearized problem, a linear program with a trust-region constraint is solved

for sk to determine a new design xk + sk (trial point) that is inside the trust-region.

We use f(xk) to indicate the objective function based on the original nonlinear equations,

and m(xk) to represent the approximation of the objective function.

Step 3. Acceptance of Trial Point

� Compute f (xk + sk) and ρk, where:

ρk =
f (xk)− f (xk + sk)

mk (xk)−mk (xk + sk)
(3.27)

� Update trial point for the next step xk+1, where:

xk+1 =

 xk + αsk if ρk ≥ η1,

xk if ρk < η1.
(3.28)
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Generally, α is set to 1. However, for robustness, α can be much smaller value to move

slowly toward the solution. Here in this study, we set α = 0.01.

If the acceptance criteria ρk is larger than the parameter η1, the iteration is successful

and xk+1 is used as the next point for the next iteration. On the other hand, the

acceptance criteria is smaller than η1, the iteration is unsuccessful, and we linearize the

model at the same location xk for the next iteration.

Step 4. Trust-Region Radius Update

� Update trust-region radius ∆k+1, where:

∆k+1 ∈


[∆k, min (γ2∆k, ∆max)] if ρk ≥ η2,

[γ1∆k, ∆k] if ρk ∈ (η1, η2] ,

(0, γ1∆k] if ρk < η1.

(3.29)

By comparing ρk with η1 and η2, the trust-region can be adjusted to approach the

solution in an appropriate manner. If the linear approximation is very accurate (i.e.,

the acceptance ρk is larger than η2), the trust-region will be expanded. On the contrary,

if ρk is small, the trust-region will be shrunk accordingly.

Step 5. Step Toward Next Iteration

� k ← k + 1.

� If the gradient is larger than the stopping criteria, return to Step 2 for the next iteration.

With this method, the trust-region size is adjusted adaptively to maintain acceptable

linearization accuracy. When the algorithm uses a good search direction, and the estimate is

accurate, the trust-region is expanded. If the LP algorithm does not converge, produces a

poor search direction, or does not estimate function values accurately, then we shrink the
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Table 3.1: Comparison of sequential linear programming (SLP) to the full nonlinear program
(NLP) result where the reference results from the NLP is used as the design fed into the
SLP solution method. The SLP results match the nonlinear optimization results exactly,
validating the fluid analysis part of the SLP formulation.

Shear Load 0.76 0.73 0.71 0.69 0.63 0.57 0.50

Normal Force (NLP) 6.25 6.00 5.75 5.50 5.00 4.25 3.25
Normal Force (SLP) 6.25 6.00 5.75 5.50 5.00 4.25 3.25

trust-region to compensate. Inspired by the move limit method used in the truss design

method from John et al. [66], we choose a new design point with α as the move limit if no

improvement is observed. Instead of adaptively updating α as the literature suggested, we

use a constant value, 0.01, in this study. Studying strategies for adaptively updating alpha is

a topic left for future work.

3.4 Verification

We compare our results to those reported in Chapter 2 for the same problem that utilized an

NLP solution method with a spline texture design representation [4]. Here, we use previous

optimal designs from the NLP solution as starting points for the SLP strategy introduced

here.

The results of the SLP and NLP solution strategies are compared in Table 3.1. SLP

obtains the same optimal normal force values as NLP, validating our method. However, the

LP cannot produce an improvement over the NLP results as the LP can only identify locally

optimal points.

3.5 Results and Discussion

Using the results from the previous NLP study as our starting points (where FN = 7.37 [N]),

we generated the Pareto set by using different values for the apparent shear viscosity bound
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(a) (b)

Figure 3.3: Optimal design results of two sample disk surfaces in a single sector view. Each
surface texture design corresponds to a different point on the Pareto frontier, as shown
in Fig. 3.5. (a) Sample surfaces, τ ∗ = 0.481, F = 2.91. (b) Sample surfaces, τ ∗ = 0.632,
F = 5.20.

(a) (b)

Figure 3.4: Optimal design results of two sample texture shapes in the full-disk view. Each
disk image corresponds to a different point on the Pareto frontier, as shown in Fig. 3.5. (a)
Sample full-disk plot, τ ∗ = 0.481, F = 2.91. (b) Sample full-disk plot, τ ∗ = 0.632, F = 5.20.

(as shown in Section 4.2). Sample surface texture designs from the Pareto set are shown

in Figs. 3.3a and 3.3b. The Pareto set was obtained using the LP optimizer included in

MosekTM with a single start method coupled with our trust-region strategy. This improves

the ability to find optimal points that may be far away from the initial design point.

Figure 3.5 compares the Pareto fronts obtained using the SLP solution to those obtained

using NLP with varying spline representation orders (N ∈ {3, 5, 7}), where N = 5 is used

as a reference solution. The SLP solution performs similar to the reference NLP solution
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Figure 3.5: Comparison of the Pareto sets obtained using the NLP method [4] and the SLP
method results obtained in this study. Design (a) corresponds to the results given in Fig. 3.3a
and 3.4a. Design (b) corresponds to the results given in Fig. 3.3b and 3.4b. SLP produces
better results than NLP when compared to spline surface representations of order N = 3, and
5 in a certain range of operating performance. The NLP solution with spline order N = 5
was chosen as the reference case. The SLP solution performs similar to the reference case in
the region 0.469 < τ∗ < 0.628, but performs better than the reference case at both high and
low τ ∗. The NLP solutions with spline order N = 7 (improved resolution) perform better
than the SLP solution.

in the region 0.469 < τ ∗ < 0.628, but performs better than the reference case at both high

and low τ ∗ values. In the region where 0.469 < τ ∗ < 0.628, there are points where the SLP

method performs worse than the NLP method (maximum 25% deviation in normal force

value between the two methods at τ ∗ = 0.5). This may be due to the choice of trust-region

and step size. Another factor may be the existence of multiple distinct surface texture designs

with the same normal force value for a give shear load, as shown in Fig. 3.1.

The greatest advantage of using the SLP strategy is realized when comparing compu-

tational expense for the solution. Table 3.2 compares the total computation time required
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Table 3.2: Computational Time to Find An Optimal Point (on Average)

N = 3 (NLP) N = 4 (NLP) N = 5 (NLP) N = 6 (NLP) N = 7 (NLP) SLP

3.7 min 7.3 min 12.2 min 17.5 min 25.1 min 1.3 min

Table 3.3: Relative Computational Time Comparison

NLP with reduced design representation N = 3 N = 4 N = 5 N = 6 N = 7

Time improvement using SLP [%] 185 462 838 1,246 1,831

(on average) to find an optimal point when using different N values for both the NLP and

SLP methods. The reported computation time was obtained using a dual-core Intel CoreTM

i5-4250U processor for all studies. As with many numerical optimization problems, we see

that there is a tradeoff here between solution quality and computational expense. Introducing

the SLP strategy allows us to reduce computational expense significantly while achieving

solution quality comparable to many of the NLP results. Table 3.3 shows how much faster

the SLP solution is compared to the different NLP solutions. Even for the lowest-order spline

design representation, the NLP method is almost twice as slow as SLP. When comparing the

highest-order NLP solution time to SLP, we find that SLP is approximately 20 times faster.

3.6 Conclusion

Several numerical studies have been performed based on a Reynolds equation model to

examine the effects of surface texture design variation on friction reduction and normal force

generation. The previous optimization studies [4, 62] achieved an efficient solution by reducing

the design representation dimension using spline texture representation and solving the NLP

optimization problem. During these previous studies, the simulation was treated as a black

box. Here, the model structure was leveraged to formulate an SLP strategy to improve design

representation fidelity and computational efficiency simultaneously. Improved design fidelity

may support the identification of new types of designs and physical mechanisms to further
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improve system performance over the previous NLP results. However, this consideration is a

topic of ongoing work and not within the scope of this study.

Numerical studies presented here indicate significant improvements in computational

efficiency while maintaining reasonable solution quality. While NLP solutions using high-order

spline representations produced higher-performance designs than SLP, the SLP solution was

at least an order of magnitude faster. Another improvement is robustness to the starting

point. The previous NLP strategy required a multi-start approach to converge to a reasonable

solution reliably. This study showed that a single well-selected starting point was sufficient

for generating all Pareto-optimal points. This method was demonstrated using a sector of

the sliding surface, but it could be extended to other models based on a semi-circle, or even

the full rotating disk.

The SLP method, however, has several clear limitations. As SLP cannot explore outside

the trust-region; once the trial point drops inside the feasible region, it can only find a local

optimum. Thus, it cannot improve the solution beyond the best results from the previous

NLP studies. In addition, because of linearization error, the SLP method produces a design

with reduced performance when τ ∗ values are between 0.469 and 0.628.

Another limitation of the current implementation relevant to moving trust-regions should

be highlighted. When using the ε-constraint method, a multiobjective optimization problem

is decomposed into a set of single-objective subproblems. A typical strategy in the solution of

these subproblems is to use the result of one subproblem as a starting point for a neighboring

subproblem. This typically helps reduce solution expenses. In this particular implementation,

however, if we use the solution of a subproblem with a larger shear load bound as a starting

point for a subproblem with a smaller shear load bound, the initial point will violate the

shear load constraint. When the LP solver detects a constraint violation, it attempts to

satisfy the constraint by moving the solution far from the current design. A large single step

is taken, reducing iterations. Conversely, when solving a subproblem using a starting point

obtained from a lower shear load subproblem, the trust-region limits progress. Even if the
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trust-region radius is adapted, effective design exploration is hampered. To address this issue,

first, we began the process by solving the largest shear load subproblem, and decremented

the shear load constraint. Thus, in this study, we solve this problem beginning with the

largest shear load case, and using the result of this subproblem, lower shear load subproblems

are solved. An improvement of this trust-region updating issue is a topic of ongoing work.

Several SLP method improvements and research questions have been identified for future

work. A more sophisticated step size update strategy may help accelerate convergence and

improve the exploration of a wider range of designs. SLP method robustness should be

improved, including the ability to start from arbitrary design points (such as a flat plane)

and converge to high-performance solutions. Finally, alternative formulations may better

capture the underlying physical mechanisms that lead to improved performance. For example,

a quadratic approximation may be a better approximation for the governing equations and

objective functions. While this may help drive the solution method to better designs, an LP

can no longer be formulated. A problem with quadratic constraints will not be as easy to

solve as an LP, but may still support the use of problem structure for solution efficiency

better than previous general NLP studies.
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Chapter 4

Efficient Sampling and Implicit Constraint
Management Methods for Multiobjective
Adaptive Surrogate-Based Optimization1

4.1 Summary

Surrogate-based optimization (SBO) techniques are extensively used in engineering design.

However, using this techniques with multiobjective optimization introduces significant chal-

lenges beyond the SBO methods focus on single-objective optimization problems (SOPs).

This study focuses specifically on resolving difficulties arise with the surrogate-based multiob-

jective optimization problems (SB-MOPs). Efficient exploitation and exploration sampling

methods for adaptive SB-MOPs are proposed in this study. Also, a technique for adap-

tively generating and managing implicit constraints using support vector domain description

(SVDD) is presented and demonstrated with practical engineering design problems. Combin-

ing these novel sampling methods, constraint management methods, and SBO algorithms

that are capable of solving multiobjective optimization problems (MOPs), we developed

the multiobjective adaptive surrogate model-based optimization (MO-ASMO) framework,

a comprehensive approach for solving challenging MOPs. The sampling methods enforce

all sample points to be feasible regarding any inexpensive constraint to minimize waste of

computational effort. This is done before any expensive model evaluations using a small

optimization subproblem that adjusts sample points. If the full model fails multiple times

with certain ranges of inputs due to numerical instability, or due to implicit constraints that

are unknown a priori, an implicit constraint generation and management technique, based

1Part of the content reported in this chapter is reprinted by permission from ASME (Lee, Corman, Ewoldt,
and Allison. A multiobjective adaptive surrogate modeling-based optimization framework using efficient
sampling strategies. In Proc. ASME IDETC/CIE, DETC2017-67541, Cleveland, OH), ©2017
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on SVDD, adaptively creates and refines constraints as more data are collected throughout

the MO-ASMO outer-loop iterations. To obtain enhanced solutions with adaptive surrogate

model refinement, the sampling for the exploitation of the predicted solution neighborhood

utilizes a force-directed layout (FDL)-inspired sample placement technique. This method

ensures the created samples located near, but not on, the hypersurface of the Pareto set

predicted in the current iteration to enhance approximation model accuracy in the regions

where solutions are likely to exist. A total of six test problems (four mathematical problems

and two practical engineering design problems) are solved using the MO-ASMO framework

to analyzed advantages of the proposed methods’ capability and efficiency.

4.2 Introduction

4.2.1 Background and Related Work

Engineering design and other optimization problems often have multiple design objectives,

where two or more objectives are competing with each other, and the decision problem involves

a trade-off between these competing objectives. The solution to such a problem is generally

expressed as a set of nondominated (Pareto-optimal) design alternatives and is referred to

as a Pareto set; non-dominated points are designs for which no objective function can be

improved without degrading any other objective functions through design changes [45, 68].

Many strategies exist for addressing multiobjective optimization problems (MOPs), classified

into multiobjective evolutionary algorithms (MOEAs) [46, 69, 70], scalarization techniques

[48, 49, 71–73], or set-based algorithms [74]. An important drawback of all these approaches

for solving MOPs is the potential for a large required number of function evaluations. This is

particularly concerning for high-dimensional, expensive, and black-box (HEB) optimization

problems.

Surrogate-based optimization (SBO), also known as metamodel-based optimization (MBO)

or metamodel-based design optimization (MBDO), is often used to mitigate the computational
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burden for solving HEB optimization problems. Results of full model responses are approxi-

mated with a limited set of design points (training samples) and their full model function

values [75–77]. This approximation is realized using interpolation, regression, or machine-

learning methods [75, 78–81]. Optimization is then performed using this approximated

inexpensive surrogate model-fidelity function evaluations. Surveys of surrogate modeling

methods and strategies for design optimization are presented in Refs. [82–84]. Please note

that the scope of the study presented here does not include investigation pertaining to selec-

tion of and a comparison between surrogate modeling methods or classes of multiobjective

optimization strategies.

Training samples are obtained using static and/or adaptive sampling methods for the

exploration of design space and the exploitation of the predicted solution region. Static or

sequential space-filling techniques, such as random, full factorial (FF), Latin hypercube design

(LHD), minimax/maximin distances, and entropy-based sampling methods, are commonly

used sampling techniques in existing SBO methods [85, 86]. These traditional sampling

approaches are useful for the exploration (global search) stage of the surrogate model

refinement, especially when the design space is not thoroughly explored. However, these

simple space-filling techniques are often not efficient for the exploitation (precise solution

finding) stage, because training a surrogate model that is accurate across the entire design

domain is computationally expensive and not necessary for optimization purposes [67].

An important strategy for limiting the number of expensive full model evaluations is

beginning with a coarse initial sample and then adaptively select new sample points to update

the surrogate model for strategic accuracy improvement [19, 87–89]. Considering sampling

efficiency in refining a surrogate model with additional samples, the model only needs to be

accurate in the neighborhood of the solution for design optimization problems. New samples

often are either chosen in regions near the predicted optimum, or in sparsely sampled regions

to improve the probability of finding a global optimum. Adaptive refinement strategies can

be classified based on types of update sequences and other characteristics. Some previous
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studies presented efficient ways to adaptively sample training points. Peng et al. [90] used a

significant sampling space (SSS) approach that shrinks the sampling region as the predicted

solution converges (but uses the same traditional sampling methods for the shrunk region),

and Cheng et al. [91] used a mode-pursuing sampling (MPS) approach that incorporates

dynamically-adjusted trust-regions.

4.2.2 Challenges

Considering decades of demand and applications for efficient SBO for HEB solution methods,

not many studies have tackled all challenges faced during practical engineering design

optimization efforts, such as constraint management that can handle failures in function

evaluations, or multiobjective problem considerations in the sampling stages. Some previous

studies address multiobjective problems using surrogate models. However, their usage is

coupled with a certain type of optimizer, e.g., particle swarm optimization (PSO) [92], limited

to a very small number of design variables [93], or their sampling methods are not distinctively

different to those for single-objective optimization problems (SOPs).

Managing constraints is challenging in SBOs. Eldred and Dunlavy [94] considered

constraints only during the optimization phase; the surrogate model is not constructed with

constraints in consideration. Hussein and Deb [95] allowed infeasible training points, but used

a convexifying term involving a sum of constraint violations. However, these strategies are

less effective for problems where constraints are coupled densely with design variables (e.g., a

multidimensional geometric mesh with gradient limiter appeared in Lee et al. [4]). In addition,

many engineering simulation models may fail when attempting to evaluate infeasible design

points. For these cases, methods should prevent expensive full model function evaluation of

infeasible points. This avoidance of computational resource waste could be accomplished by

filtering. However, in problems with narrow, non-convex feasible domains, this may require

discarding a large portion of sample points generated using conventional strategies (e.g., LHD

or central composite design (CCD)). Processing and filtering a large number of infeasible
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sample points to obtain a few feasible points may dominate computational effort, and is an

inefficient strategy. Here we seek strategies that, by nature, generate only feasible sample

points.

For some design problems, it is possible that a particular design input corresponds to

a feasible design in terms of the constraints, but is not solvable using the model functions

(functions that evaluate objectives and/or constraints, e.g., simulations) due to a number

of reasons, such as numerical instability or physical impossibility. In this case, it may not

be known what values of design input variables cause the failure of function evaluation

until attempting execution of the expensive full model function, preventing the definition of

constraints in advance [13]. In this study, we use a novel strategy using the support vector

domain description (SVDD) [96, 97] to adaptively define constraint boundaries to avoid the

optimization algorithm exploring regions where failures of full model function evaluations

are observed. To distinguish this type of constraints from typical preformulated infeasible

regions, we refer to these regions as “invalid” input, or “invalid regions”, for simplicity.

Another sampling challenge touched on above is efficient sampling for updating surrogate

models, balancing exploration (global search), and exploitation (precise solution) of the

design space [98–100]. Previous studies aimed to achieve the following goals simultaneously:

1) finding a global solution, 2) finding an accurate local solution, and 3) limiting the number

of expensive full model function evaluations. Many efforts in adaptive surrogate modeling

(ASM) have been successful in achieving these objectives for SOPs. Extension to MOPs,

however, gives rise to new challenges that have not been addressed thoroughly. For example,

regarding the exploitation goal, an accurate local solution requires that the surrogate model

is accurate in the neighborhood of the estimated Pareto set (often an (mx − 1)-dimensional

hypersurface in the design space, where the design space dimension is mx), as opposed to

just being accurate in the neighborhood of the estimated optimal design (a single design

point). Quantifying this local accuracy and validating the surrogate model is much more

complicated for MOPs compared to SOPs. This motivates new efficient sampling strategies
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for model validation.

4.2.3 Summary of Contributions

This study presents advancements of ASM for MOPs that aim to effectively reduce the

number of required expensive full model evaluations to obtain optimal solutions (a Pareto

set). These advancements aim to cope with challenging problem characteristics, such as

tightly-constrained design spaces (small, complex feasible domains) and the need to evaluate

only feasible sample points. This study’s contributions include: (1) a novel global sampling

strategy for tightly-constrained design spaces, (2) a novel adaptive sampling strategy, and (3)

avoidance of regions where full model function failures are observed. The proposed global

sampling algorithm can generate globally-distributed feasible training points. This advantage

is especially useful when the feasible design space is extremely small relative to the full

design space, which often makes standard sampling strategies impractical. The new adaptive

sampling algorithm utilizes a novel force-directed point locating strategy for generating

sample points near the estimated Pareto set. This approach is inspired by the force-directed

layout (FDL) algorithms often used for graph visualizations [101, 102]. In addition, when

full model function failure repeatedly occurs in a specific range of design spaces, whether

constraints are satisfied or not, the input validity management subroutine can identify these

regions using SVDD and block it from further exploration. This strategy is also advantageous

when the feasibility of design space regions is unknown a priori, and helping to prevent failure

of the optimization solution method when function failure occurs.
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initial (k = 1)
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M, I← {F,C}tr
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predicted Pareto set
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{C}tr,inexp← Hinexp (X)

expensive function
{F,C}tr,exp ← Hexp (X)

surrogate model
{F,C}pr←M(X) , I(X)

k
←

k
+

1

Figure 4.1: High-level flow chart of proposed MO-ASMO framework. A direct sampling
strategy is used for updating the surrogate model, meaning that the surrogate model is
validated and updated only after the target optimization problem is solved on the model.
There is no inner loop that updates the surrogate model, and the update sampling is only
performed at the outermost iterative loop. The algorithm is described in detail in the
following sections.

4.3 Methods

4.3.1 The MO-ASMO Framework Structure

The multiobjective adaptive surrogate model-based optimization (MO-ASMO) algorithm we

developed (readers may obtain the code from Refs. [103, 104]) solves MOPs given in Eq. (4.1)

on a constructed surrogate model, which is updated iteratively using new training sample

points. The full model may include combinations of expensive objective functions, expensive

nonlinear constraint functions, and inexpensive linear and nonlinear constraint functions.

The nonlinear constraints are classified into expensive (cexp) and inexpensive (cinexp) groups
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and enforced in different steps.

minimize
x=[x1,··· ,xmx ]

f
(
xT
)

=
[
f1, · · · , fmf

]
subject to Aineqx

T − bineq ≤ 0, Aeqx
T − beq = 0,

cineq,exp

(
xT
)
≤ 0, ceq,exp

(
xT
)

= 0,

cineq,inexp

(
xT
)
≤ 0, ceq,inexp

(
xT
)

= 0,

xlb ≤ x ≤ xub,

where
[
f, cineq, ceq

]
exp
← full model (expensive) func. (x) ,[

cineq, ceq

]
inexp
← full model (inexpensive) func. (x) ,

(4.1)

where x is the vector of design variables, f is the vector of objective functions, A is the

coefficient matrix, b is the constant vector of linear constraints, and c is the nonlinear

constraints vector. Subscripts ‘exp’ and ‘inexp’ correspond to the expensive and inexpensive

groups of full model functions. The flow chart in Fig. 4.1 illustrates the high-level algorithm

strategy. Many parts of the algorithm are implemented from our previous version of the MO-

ASMO framework [67, 103], but the overall structure of the algorithm has been re-written to

accommodate more general problem-solving capability. According to Wang and Shan [82], the

algorithm can be classified as a direct sampling approach, meaning that samples are directly

generated toward the optimum in support of the surrogate model. The direct sampling can be

described in following sequences: (1) initial training samples are generated; (2) design points

of training samples are evaluated with the full model to obtain training data; (3) surrogate

models for F and C are constructed: M is to model expensive function responses and I is

to encapsulate invalid regions, by using all existing results. The framework is independent

of multiobjective optimization algorithm choice. Thus, users can choose from any type of

MOEAs (e.g., nondominated sorting genetic algorithm II (NSGA-II) [46]) or gradient-based

(e.g., scalarization methods [48, 71]) algorithms. Here we used ε-constraint and NSGA-II

algorithms for our test problems. We assume that computational costs for the optimization
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Algorithm 1: Main loop of the MO-ASMO code

1 while stopping criteria not met do
2 XT ← initial or update sampling
3 {F,C}T,tr ← expensive function evaluations for XT

4 {F,C}T,tr,v , {F,C}T,tr,i ← separate valid/invalid points from {F,C}T,tr
5 {F,C}T,tr,v,p , {F,C}T,tr,i,p ← append {F,C}T,tr,v , {F,C}T,tr,i
6 M← train surrogate model using {X,F,C}T,tr,v,p
7 I← train invalid region model using {X,F,C}T,tr,i,p
8 X0 ← choose staring points for optimization
9 {X,F,C}P,pr ← surrogate-based optimization

10 XV ← choose validation points from XP,pr

11 {F,C}V,tr ← expensive function evaluations for XV

12 {F,C}V,tr,v , {F,C}V,tr,i ← separate valid/invalid points from {F,C}V,tr
13 ε← compute Euclidean distance error (||∆F||)
14 ∆← compute residuals of convergence metrics
15 evaluate stopping criteria using ε and ∆
16 k ← k + 1

using the surrogate model is very low compared to the cost of the full model evaluations when

using the MOEAs, e.g., NSGA-II. Even if millions of function evaluations are required to

obtain a good Pareto set estimate based on the surrogate model, this computational expense

is still a fraction of the expense for evaluating the full model multiple times. This framework

is capable of handling up to a hundred design variables stably (and likely even more), as

well as more than two objective functions. To avoid excessive memory consumption in these

multidimensional problems, we refrained from using full-factorial type loops in the algorithm,

and users can choose from either vectorization or parallelization for their problem. Details of

each step in the main loop algorithm are explained in later sections.

The main loop of the MO-ASMO strategy is given in Algorithm 1. Unlike gradient-

based or trajectory-based optimization algorithms, population-based and surrogate-based

algorithms need to handle multiple design points at once. Thus, the variables X, F, C are

the matrices that contain vectors of design variables, objective functions, and constraint

functions of multiple design points. For example, design variables of single design point

can be expressed as a row vector x = [x1, · · · , xmx ] and the matrix that contains multiple
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design points can be expressed as a matrix X = [x1, · · · , xn]T of size n×mx, where mx is

the number of design variables and n is the number of design points. Subscripts T , P , V ,

and p correspond to training, Pareto-optimal, validation, and pool, respectively; subscripts

‘tr’ and ‘pr’ corresponds to true and predicted ; subscripts ‘v’ and ‘i’ corresponds to valid and

invalid inputs. The algorithm begins with the loop number index k = 1. Initial samples

(when k = 1) are generated by users’ choice of design of experiments (DOE) method. Update

samples (when k > 1) consist of both exploration samples and exploitation samples. Sampling

methods are explained in later sections. After evaluating the full model on the samples,

the algorithm distinguishes a valid set of input and output from an invalid set. Using the

pool of valid input and output data, the algorithm trains surrogate models for objective

functions (M : X→ F) and constraint functions (M : X→ C); trains invalid region model

using invalid data set (I : X→ Cv/i). The pool (subscript p) contains all the sets of values

compiled throughout the history of main-loop iterations of k.

Multiobjective optimization is performed on the surrogate models created in the prior

steps, using the starting points selected for a particular optimization algorithm of choice.

For example, if a population-based method, such as NSGA-II, is the algorithm of choice for

the surrogate-based multiobjective optimization problem (SB-MOP), the number of starting

points are the same as the population size and selected from the previous main loop iteration

results (plus randomly generated points, if more points are needed). If the ε-constraint

method is the algorithm of choice for the SB-MOP, the starting points are chosen from the

previously-predicted Pareto-optimal points, based on the distance between each ε-constraint

value and the location of the target point.

After the predicted Pareto set is obtained from the surrogate-based optimization, validation

samples are chosen among the solution. The full model results of the validation samples

are compared to the surrogate model results to compute error metrics, such as Euclidean

distance and residual of various convergence metrics, to evaluate a stopping condition. If

the errors are larger than the stopping criteria, the MO-ASMO algorithm loops again with
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Algorithm 2: Sampling algorithm for exploration

1 XT ← sampling in (0, 1)mx×n space

2 XT ← scale XT from (0, 1)mx×n space to (xlb, xub) space
3 X0 ← XT

4 for j ← 1, · · · , n do
5 solve: minimize d

(
xj
)

= w1d1 + w2d2, subject to:

d1 =
∣∣∣∣xj − x0,j

∣∣∣∣, d2 =
∑nT,p

l=1 − ln
(∣∣∣∣xj − xT,p,l∣∣∣∣ 6= 0

)
,

Aineqx
T
j − bineq ≤ 0, Aeqx

T
j − beq = 0, Cineq ≤ 0, Ceq = 0, I

(
xj
)
≤ 0

6 for j ← 1, · · · , n do
7 XT (j)← xj (concatenate).

updated samples for refining the surrogate models.

4.3.2 Exploration Sampling (Initial and Update Stages)

The sampling stage aims to determine the region in the design space where we would like

to gain more information, helping to place new samples efficiently during the iterative SBO

process. Combinations of exploration of global response and exploitation of the predicted

solution neighborhood are utilized throughout the optimization process. Exploration sampling

helps to provide a more comprehensive knowledge of the entire design domain to the optimizer,

and this is specifically important in the early stages of adaptive refinement of the surrogate

model to improve the likelihood of identifying globally nondominated solutions.

Here, a novel sampling strategy is created for generating exploration samples, and is

described in detail in Algorithm 2. The objective d2 and the constraint model I apply only

to the update sampling stage, since d2 utilizes the pool of previous design points; the invalid

region model I can be defined after at least one main loop iteration. In the sampling stage,

the LHD method is a typical choice, but any other DOE methods, such as CCD or random

sampling, can be used instead. After the samples are scaled to the design variable bounds,

the optimization subproblem given in Line 5 is solved for each sample point to enforce

linear, nonlinear constraints, and a constraint defined by the invalid region model given

in Section 4.3.5, while minimizing relocation distance (d1) and maximizing distances from
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Algorithm 3: Sampling algorithm for exploitation

1
(
xP,lb, xP,ub

)
← hypercube encapsulating XP,pr with added margin

2 XP,pr ← scale XP,pr from
(
xP,lb, xP,ub

)
space to (0, 1)mx×n space

3 XB ← get nexploitation numbers of cluster centers of XP,pr

4 for j ← 1, · · · , predefined maximum number of steps do
5 S← 0, Xdiff ← XM −XB, rdiff ← ||Xdiff||
6 S← S− (Xdiff/rdiff) log (C1rdiff)
7 for l← 1, · · · , nP,pr do
8 Xdiff ← XM − xP,pr,l, rdiff ← ||Xdiff||
9 S← S + (Xdiff/rdiff) (1/n2

B) (C2/r
2
diff)

10 s← ||S||, smax diminishes as j increases
11 S← (S/s) min (s, smax)
12 XM ← XM + S

13 XT ← combine (concatenate) XT and XM

previously existing points (d2). The expensive constraints must be excluded from being

enforced in this stage. Linear constraints only require design variable values to be evaluated.

Nonlinear constraints that do not require expensive function evaluation are enforced to

generate samples in tentatively-feasible regions in the design space.

4.3.3 Exploitation Sampling (Update Stage)

In the update stage, another novel sampling method was developed for the exploitation

of the predicted solution neighborhood, inspired by the FDL algorithm that is often used

in graph visualization [101, 102]. In this sampling stage, sampling points must be placed

not on, but near the Pareto set hypersurface (in mx − 1 dimensional space, when design

space dimension is mx) to improve surrogate model accuracy in the vicinity of the estimated

solution (Pareto set). The exploitation sampling strategy is described in Algorithm 3. XB

represents a matrix of the centers of previously-predicted Pareto-optimal design point clusters,

also called base points; XM represents a matrix that contains points created nearby each

cluster center included in XB, also called as moving points ; S is a matrix that contains the

displacement vectors of sample points for each step of the force-directed dynamic sample

relocation algorithm; s is a vector that contains the magnitudes of the displacement vectors
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of sample points included in S.

Sample points are subjected to two types of predefined forces and move dynamically toward

equilibrium. For simplicity, the force is directly interpreted as a displacement, following

Fruchterman and Reingold [102]. One type of force is a combined attractive-repulsive force

(but in a quantity of displacement) using a log-spring law between each new sample point

and a corresponding base point, as quantified in Eq. (4.2):

sB,i = − xM,i − xB,i∣∣∣∣xM,i − xB,i
∣∣∣∣ log

(
C1

∣∣∣∣xM,i − xB,i
∣∣∣∣) , (4.2)

where si is the displacement vector of i-th design point that is included in the displacement

matrix S, and sB,i represents the log-spring portion (a force acting between a new sample

point and the corresponding base point) of the total computed displacement si.

The other type of force considered in this study is a repulsive force using an inverse-square

law between each of a new sample point and all points in the Pareto set, as quantified in

Eq. (4.3):

sP,i =

nP∑
l=1

xM,i − xP,l∣∣∣∣xM,i − xP,l
∣∣∣∣ 1

n2
B

C2∣∣∣∣xM,i − xP,l
∣∣∣∣2 =

nP∑
l=1

xM,i − xP,l∣∣∣∣xM,i − xP,l
∣∣∣∣3 C2

n2
B

=

nP∑
l=1

sP,i,l (4.3)

where:

sP,i,l =
xM,i − xP,l∣∣∣∣xM,i − xP,l

∣∣∣∣3 C2

n2
B

. (4.4)

Here, xP,l is the l-th point in the Pareto set, and nP is the number of points in the Pareto set.

The term sP,i represents the inverse-square portion (forces acting between a new sample point

and all points in the previously-predicted Pareto set) of the total computed displacement si,

which now can be represented as:

si = sB,i + sP,i = sB,i +

nP∑
l=1

sP,i,l. (4.5)
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Algorithm 4: Algorithm for selecting validation samples

1 i← initialize with (false)nP×1

2 for j ← 1, · · · ,mf do

3 {X,F}P,pr ← row-sort
(
{X,F}P,pr , column:fj

)
4 il ← (true) where l← index of xP,pr for x← argmin (fj,P,pr)

5 for l← 1, · · · , (nP − 1) do
6 dl ←

∣∣∣∣xP,pr,(l+1) − xP,pr,l

∣∣∣∣
7 if dl � mean (∀dl) then

8 il ← (true), i(l+1) ← (true)

9 while count (i = (true)) < nV do
10 dmin ← 0nP×1

11 for l← 1, · · · , nP do
12 dmin,l ← minimum distance from any of xP,pr,q for all q with iq = (true)

13 il ← (true) where l← index of xP,pr that has maximum value in dmin

14 XV ← X
i=(true)
P,pr

After the forces (in the form of displacement si) are computed, the sample point (xM) is

moved to a new position toward the force equilibrium. However, to produce a smooth and

convergent behavior, a maximum displacement limit is applied in each step, the magnitude

of which diminishes over steps. Updates for the position of the new sample point is given as:

xr+1
M,i = xrM,i + min

((
sB,i + sP,i

)
, smax

)
, (4.6)

where maximum displacement smax diminishes as the step r increases. C1 and C2 are arbitrary

values, and optimal choices for these parameters are unknown. For this study, we perform 20

point-moving steps, and specify C1 = 100, C2 = 10 for the force-directed sampling method.

4.3.4 Selecting Validation Samples

The strategy for selecting validation samples is given in Algorithm 4. Here, i is a boolean

vector that indicates which design points are selected as validation samples. In the direct

sampling method we used in the MO-ASMO framework, optimization is performed before

the constructed surrogate model is validated. Thus, the predicted solution obtained by the
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optimizer of choice can be utilized directly for validating the surrogate model accuracy. These

sample points are used to check the Euclidean distance error between the values predicted by

the surrogate model and the values computed by the full model. When validating the solution

accuracy (and this is locally equivalent to the surrogate model accuracy in the neighborhood

of the predicted solution), it is important to determine (approximately) whether the surrogate

model is accurate enough across the entire predicted Pareto set. Thus, the algorithm for

selecting validation samples among many points in the Pareto set should select points

strategically. Several assumptions are made here regarding how validation samples should be

specified. First, the selected samples for validation need to be uniformly distributed among

obtained Pareto-optimal solutions; and second, the selected samples for validation also need

to include extreme locations, such as anchor points and segment ends of discontinuous Pareto

sets (if discontinuities exist). In the selection procedure, extreme samples are chosen first

(anchor points in Line 4 and discontinuous solution points in Line 8 in Algorithm 4). The

rest of the samples are selected uniformly using a distance-based bisection method, defined

in Line 13 of Algorithm 4.

4.3.5 Modeling the Region of Invalid Inputs

When the full model response is not easily predictable and simulation failure occurs with

specific ranges of design input values, a model for defining invalid input regions can be

useful to avoid wasting computational resources. Examples of simulation failures may include

numerical instabilities, physically irrational inputs not easily formulated as formal a priori

constraints, or simulation model limits.

The model proposed here for approximately defining the invalid region(s) model utilizes

the SVDD method [96, 97] to train virtual hyper-boundaries between valid and invalid

design spaces [13]. The SVDD virtual hyper-boundaries are trained and updated during

each MO-ASMO iteration to provide up-to-date constraint information to the sampling and

optimization algorithms. Training the SVDD model requires a solution of an optimization
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subproblem, given as:

maximize W
(
β
)

=
∑
i

βiKG (xi, xi)−
∑
i,j

βiβjKG

(
xi, xj

)
subject to

∑
i

βi = 1, ∀i : 0 ≤ βi ≤ C,
(4.7)

where Lagrange multipliers β = [β1, · · · , βnx ] are bounded by an arbitrary constant C, and

the Gaussian kernel KG is defined as:

KG

(
x, y
)
≡ exp

(
−q
∣∣∣∣x− y∣∣∣∣2) . (4.8)

The Gaussian kernel KG used here implicitly maps invalid design points x to some higher-

dimensional feature space, which allows us to define a hypersphere tightly encapsulating

the region of the invalid design point clouds. Varying C can help detect the outliers in the

dataset that describes the domain. Parameter q also determines the tightness of the domain

description around the training data.

If any arbitrary point z in the design space is inside the encapsulated boundary, the

radius from the center of the hypersphere to the point z in the featured space is smaller than

the radius to the boundary points xsv, which is called a support vector. The arbitrary point

z is inside the hypersphere boundary if:

R2 (xsv)−R2 (z) ≥ 0, (4.9)

where:

R2 (z) = KG (z, z)− 2
∑
i

βiKG (z, xi) +
∑
i,j

βiβjKG

(
xi, xj

)
. (4.10)

The support vectors (xsv) are the points with positive (non-zero) Lagrangian multipliers

(βi) smaller than the C value among the training points. Note that the points inside the

boundary are indicated by βi = 0. Figure 4.2 shows a two-dimensional demonstration of the
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Figure 4.2: Implicit constraint generation based on the invalid input data using the SVDD
method. Shaded area is the actual invalid input domain. Black lines encapsulate the invalid
data points to construct implicit boundaries with continuous feasibility contours. Parametric
studies are illustrated for 0.1 ≤ C ≤ 100 and 10 ≤ q ≤ 100.

implicit constraint generation for encapsulating invalid regions based on invalid input data.

Constraint tightness is especially sensitive to the value of q. Regardless of the values of the

C and q parameters, the invalid input domain (shaded region) is well-bounded by the SVDD

constraint generation method.

In earlier design work utilizing the SVDD [97, 105], valid design input data are encapsu-

lated. With this earlier strategy, the boundary encapsulating valid design inputs may help the

optimization algorithm find solutions efficiently within valid design input regions. However,

from the perspective of the exploration of unknown design spaces, it does not provide useful
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information. This previous approach is effective when the sample data to train the SVDD

boundary are already distributed over a wide range of a design space without leaving an

unexplored region. Thus, to aid the exploration algorithm in navigating unexplored regions

freely while avoiding regions of invalid input data, we used the SVDD method to encapsulate

invalid data set to approximates the boundary of regions that cannot be simulated. One of

our earlier studies demonstrated that this “converse” approach is effective in the context of

particular simulation-based MOP [13].

4.3.6 Stopping Criteria

Checking hard convergence, such as first- and second-order optimality conditions (and

especially for SB-MOPs), is not always straightforward for SBO problems when the algorithm

does not aim to achieve high accuracy over the entire surrogate model. Soft convergence

metrics, such as relative improvement in the objective function, can be an alternative to

hard convergence when they are not available for specific SBO problems [94]. In addition,

determining convergence for SB-MOPs has additional difficulties. Since the solution of MOPs

is not a single design point, even checking the zero-order condition (||M (x)−H (x)|| → 0)

for each solution point in the Pareto set (xP ) can be cost-prohibitive. This study uses soft

convergence metrics, including hypervolume (HV)-related metrics of the Pareto frontier, as

well as the Euclidean distance error to check the zero-order condition for select points in the

objective function space. The algorithm for determining the stopping condition terminates

the main loop when one or all criteria of users’ choice are consecutively satisfied for a specified

number of occurrences (or just once) during the main iterations.

Euclidean Distance Error

Checking the zeroth-order condition for select points (selected in the validation stage) is one

of the most primitive but important metrics for determining the convergence of SB-MOP

solution algorithms. In m-dimensional Euclidean space, the zeroth-order condition can be
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Algorithm 5: Algorithm for computing hypervolume residual metric

1 if k = 1 (initial iteration) then
2 return R ← 1
3 Vr=k ← compute hypervolume

4 ∆Vmax ← max
(
Vr=1,··· ,k)−min

(
Vr=1,··· ,k)

5 return ∆V ←
∣∣Vr=k − Vr=k−1

∣∣ /∆Vmax

expressed as a Euclidean norm (distance) between predicted and true (result of the full

model) points in the objective function space. Thus, we refer to this convergence metric as a

Euclidean distance (ED) error between predicted and true objective function values, and it is

given as:

εED = ||M (x)−H (x)|| . (4.11)

The ED error (εED) is computed for each sample point selected for validation during the

stopping condition evaluation stage, and the maximum, mean, or median values can be used

as stopping criteria.

Residual of Hypervolume (HV)

The HV is one of the most popular soft convergence metrics that indicate the convergence

of the Pareto frontier as well as the diversity of the solution in a combined sense [69]. To

accurately monitor the HV, it is important to set a consistent bound for a domain in the

objective function space, which is often unknown a priori. Also, if the bounds are adaptively

adjusted using all explored design points, a new point that is far from the solution drastically

affects the value of the HV metric. Thus, we adaptively adjust the bounds by setting a utopia

point, an anti-utopia point, and the predicted nondominated points. Within the hypercube

defined with these aforementioned points, the HV is computed as the volume shaded by the

hypersurface of the nondominated points, as illustrated in Fig. 4.3. As denoted in this figure,

the domain of interest for computing the HV metric is the hypercube tightly containing the

Pareto set using utopia and anti-utopia points, defined using the Pareto set. A Monte-Carlo
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f1

f2 Pareto set
dominated points
utopia point
anti-utopia point
domain of interest
hypervolume

Figure 4.3: Domain for computing hypervolume (HV) metric. In m-dimensional objective
function space, the HV metric is calculated as a hypervolume that is bound by utopia and
anti-utopia points and dominated by the Pareto frontier. Drawing shows an example of HV
as a shaded area for 2D objective function space.

Table 4.1: List of the test problems

ID Case Name and Reference mx mf mc

P1 Chakong and Haimes [68] 2 2 2
P2 Osyczka and Kundu [106] 6 2 6
P3 Valley-shaped constraint 2 2 1
P4 Deb et al. (DTLZ1) [107] 12 3 0
P4 Deb et al. (DTLZ1) 14 5 0
P5 Q-car suspension design 6 2 5
P6 Lee et al. (III.A.2) [13] 36 2 107

method was used to acquire an approximated value of the HV metric. Both or either the

absolute HV size (V), and the ratio of HV size to the domain used for computing the HV, can

be used for computing residuals (∆) for determining the stopping condition. The algorithm

for computing HV residual is given in Algorithm 5, where Vr is the HV at r-th iteration of

the adaptive refinement procedure of the MO-ASMO method.

4.4 Test Problems

The MO-ASMO framework developed here is tested using several benchmark problems, which

are listed in Table 4.1. Benchmark problems P1 through P4 are mathematical benchmark

problems, whereas problems P5 through P6 are practical engineering design optimization

problems. Readers are referred to the original works for the problem definitions of the
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Figure 4.4: Case P3: Valley-shaped constraint function. (a) and (b) Responses of objective
function 1, 2 (contours) and feasible region (white). (c) Objective function responses and
Pareto set within feasible region. (d) Constraint function and feasible region.

problems listed as P1 [68], P2 [106], P4 [107, Problem DTLZ1], and P6 [13, Section III.A.2].

Definitions of the problems introduced in this chapter (P3 and P5) are described in the

following sections.

4.4.1 P3: Valley-Shaped Constraint Function

We developed a new test problem, defined in Eq. (4.12) and illustrated in Fig. 4.4, to test

the proposed framework more thoroughly with respect to the ability to manage tightly-

constrained feasible domains [67, 108]. This problem combines sinusoidal and exponential

objective functions with a shifted Rosenbrock valley function [109] as a constraint, and is
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Table 4.2: Parameter values used in models of P5: Quarter-car design problem

Variable Value Unit Variable Value Unit

m1 466.5 [kg] m2 49.8 [kg]
k1 5,700 [kg/s2] k2 135,000 [kg/s2]
c2 1,400 [kg/s] ζR 0.1 [m]

defined as:

minimize
x=[x1,x2]T

f (x) = [f1, f2]

subject to g ≤ 0

where f1 =
(
3 sin

(
5x1
2

)
− 2x1

) (
cos (x2) exp

(
−x22
1000

))
,

f2 = 3
(

3|x1|
10

)19/25 (
1
8
x2 sin (5x2)

)
,

g =
(

100 (x2 − x2
1)

2
+ (x1 − 1)2

)
− 1,

−5 ≤ x1 ≤ 5, −5 ≤ x2 ≤ 5.

(4.12)

The feasible region in the design space is shown as a white colored region in Figs. 4.4a, 4.4b,

and 4.4d, and is shaded with light gray in Fig. 4.4c. The Rosenbrock valley function is already

a poorly-scaled function, so exploring the region of interest (the narrow feasible region in

this case) is challenging for many optimization algorithms.

4.4.2 P5: Quarter-Car Suspension Design Using Viscoelastic

Damper Problem

Another problem we developed for testing the MO-ASMO method is an optimization of a

quarter-car automotive suspension using a viscoelastic damper (VED), which is illustrated

in Fig. 4.5b [67]. The quarter-car suspension model, shown in Fig. 4.5a, is a common

simplification for analyzing and designing vehicle dynamics [110, 111]. We replaced the

linear damper c1 between sprung and unsprung mass in Fig. 4.5a with a linear VED “VE” in

Fig. 4.5b. This VED is parameterized using the multimode Maxwell model [112]. In this

problem, design variables are parameters defining the VE element. Other parameters are
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z(t)

unsprungm2

k2 c2

ζ2 (t)

sprungm1

k1 c1

ζ1 (t)

(a)

z(t)

unsprungm2

k2 c2

ζ2 (t)

sprungm1

k1 VE G(τ)

ζ1 (t)

(b)

Figure 4.5: Case P5: Quarter-car suspension model with linear and VEDs. (a) Standard
quarter-car suspension model with linear dashpot as a dampling mechanism. (b) Quarter-car
suspension model with viscoelastic element as a dampling mechanism.

fixed constants, given in Table. 4.2, and the road profile z (t) is predefined after Allison [113].

The design objectives are (1) enhancing the comfort by minimizing amplitude of accelera-

tion and (2) enhancing the handling by minimizing wheel deflection, given as:

f = [f1, f2] , (4.13)

where:

f1 =
1

tf − t0

∫ tf

t0

(
ζ̈1 (t)

)2

dt,

f2 =
1

tf − t0

∫ tf

t0

(ζ2 (t)− z (t))2 dt.

(4.14)

Reducing the comfort metric corresponds to enhancing a surveyed human comfort level [114],

and reducing the handling metric corresponds to less variance in tire contact force, helping

to enhance cornering and traction performance [115].

The linear VE behavior is described using a time-dependent function, the relaxation

kernel, G (τ). The time-dependent force through a one-dimensional VE element, FVE, can be

represented as a convolution integral using this relaxation kernel, given as:

FVE,ζ̇ =

∫ t

−∞
G (t− t′) ζ̇ (t′) dt′ =

∫ ∞
0

G (s) ζ̇ (t− s) ds, (4.15)
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where s = t−t′, and ζ̇ is the deformation velocity of the VE element. In general, the relaxation

kernel G does not require a structure of linear springs and dashpots. Here, however, we

utilize the Maxwell model, which utilizes this specific structure, for our parameterization to

simplify design representation. An M -mode Maxwell model for the relaxation function can

be described by:

G (t) =
M∑
m=1

Gm exp

(
− t

λm

)
, (4.16)

where Gm is the m-th Maxwell spring constant, and λm is the m-th relaxation time. A

Maxwell element consists of a linear spring and a linear dashpot connected in series. Since

this parameterization can have the same (or similar) relaxation kernel function with many

different sets of parameters, we limited λm to have monotonically decreasing values using the

constraints λi > λi+1. We also limited the sum of Gm terms to be 300 or less (
∑
Gm ≤ 300).

Since the model is scaled in log space, it is impossible to model these constraints using linear

constraints. However, they can be evaluated without running an expensive simulation; thus,

the MO-ASMO algorithm may take advantage of this by shrinking the exploring design region

significantly, which is a challenge that this MO-ASMO algorithm was developed specifically

for. We also have two additional constraints defining the rattle space of the suspension

(ζ1 − ζ2 ≤ ζR, ζ2 − ζ1 ≤ ζR), which could be evaluated after the simulation is performed.

These constraints are enforced by the optimization algorithm.

A dynamic simulation model of this quarter-car suspension system is given as:

ξ̇ = Aξ + Bż + C, (4.17)
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where:

A =



0 1 0 0

−k2/m2 −c2/m2 k1/m2 0

0 −1 0 1

0 0 −k1/m1 0


, B =



−1

c2/m2

0

0


, C =



0

FVE,(ζ̇1−ζ̇2)/m2

0

−FVE,(ζ̇1−ζ̇2)/m1


,

(4.18)

and the state vector is given as:

ξ =



ζ2 − z

ζ̇2

ζ1 − ζ2

ζ̇1


. (4.19)

This state-space model is solved using the forward predictor-corrector method with numerical

evaluation of the nested convolution integral given in Eq. (4.15) for each time derivative

function evaluation. This solution approach is a type of single-shooting method for dynamic

system optimization, and with the numerous required convolution integral evaluations, the

computational cost is very high compared to the other test problems. As a result, the

MO-ASMO solution method is beneficial not only in terms of total function evaluations, but

also in terms of computational time.

4.5 Results and Discussions

4.5.1 P1: Chakong and Haimes Function

The Chakong and Haimes problem (case P1) is formulated assuming that the constraints

are all nonlinear and expensive, which means that no constraints are enforced during the

sampling stage. The results are shown in Fig. 4.6. Pareto-optimal solutions obtained by the

MO-ASMO and direct optimization (DO) methods are compared in Fig. 4.6a, where DO-EC
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Figure 4.6: Summary of results for case P1: Chakong and Haimes function. (a) Comparison
of solutions using different methods. (b) Full model results during the MO-ASMO run. (c)
Solution points obtained during each MO-ASMO refinement. (d) Convergence in Euclidean
distance (ED) and hypervolume (HV) metrics.

stands for the direct optimization using ε-constraint (DO-EC) method and numbers in the

parentheses are the numbers of (hypothetically-expensive) full model evaluations required to

obtain the solutions. Figure 4.6b shows feasible and infeasible points evaluated using the full

model in the objective function space. Figure 4.6c describes how the Pareto frontier evolved

during the MO-ASMO iterations using the full model results in the objective function space.

Square markers are nondominated points, and cross (×) markers are dominated points at

each MO-ASMO iteration. Figure 4.6(d) shows the convergence based on ED and HV metrics.

The HV metric is computed using the predicted solutions at each iteration.

The MO-ASMO algorithm evaluated the full model 33 times (25 feasible and 8 infeasible

points) to obtain a set of solutions comparable to the result of NSGA-II algorithm, which
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required 21,001 full model evaluations. The DO-EC method could only provide a suboptimal

solution even with a 16 times more full model evaluations (total: 542 evaluations), compared

to the MO-ASMO algorithm. When the constraints are enforced before the optimization, the

convergence of the MO-ASMO algorithm is slower (46 feasible and 10 infeasible points, total

56 full model evaluations) because there is no objective function response information in the

infeasible region provided to the surrogate model. Infeasible points are often evaluated in

the validation stage in the early stage of the MO-ASMO iterations because of inaccurate

surrogate models trained using limited samples, and this is unavoidable. Thus, enforcing the

constraints during the sampling stage is not helpful for this problem.

4.5.2 P2: Osyczka and Kundu Function

The Osyczka and Kundu problem (case P2) is formulated, assuming that the constraints are

all nonlinear and expensive, as we assumed for case P1. The results are shown in Fig. 4.7.

Pareto-optimal solutions of different methods are compared in Fig. 4.7a. Direct optimization

using NSGA-II required a very large number of generations and over 200,000 full model

evaluations for obtaining solutions near the left-most edge in the plot (where f2 values are

above 40). In contrast, the MO-ASMO algorithm easily obtained the solutions for the same

region within a few iterations with fewer than 100 full model evaluations. The DO-EC method

easily obtained the left-most anchor point, but suffered difficulty in the middle regions of the

Pareto frontier, and near the other anchor point where f1 values are between -250 and -40.

Feasible and infeasible points explored by MO-ASMO are given in Fig. 4.7b. An evolution of

the solution in the objective function space is given in Fig. 4.7c, and the convergence metrics

are given in Fig. 4.7d. The solution converged at 114 full model evaluations, resulting in 63

feasible and 51 infeasible training points, and the MO-ASMO algorithm captured the shape

of the Pareto-frontier accurately. Also, as we see in case P1, enforcing the constraints during

the sampling stage does not help accelerate solution convergence for this problem.
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Figure 4.7: Summary of results for case P2: Osyczka and Kundu function. (a) Comparison
of solutions using different methods. (b) Full model results during the MO-ASMO run. (c)
Solution points obtained during each MO-ASMO refinement. (d) Convergence in Euclidean
distance (ED) and hypervolume (HV) metrics.

4.5.3 P3: Valley-Shaped Constraint Function

The valley-shaped constraint problem is formulated assuming that the constraint function is

inexpensive and independent of the objective function; thus, we can enforce the constraint

during the sampling stage. For the constraint function in this problem, the feasible region

is long, narrow, non-convex, and nearly flat in terms of the constraint function value (see

Fig. 4.4d). Thus, it is not efficient to generate samples for training the surrogate model using

standard sampling strategies. Also, the Pareto frontier of this problem is neither continuous

in the objective function space, nor in the design space, which increases design exploration

difficulty. Thus, enforcing the constraint function directly prior to the SBO stage has a
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Figure 4.8: Summary of results for case P3: Valley-shaped constraint function. Initial and
update samples for training the surrogate models comply the constraint function prior to run
the SBO. (a) Comparison of solutions using different methods. (b) Full model results during
the MO-ASMO run. (c) Solution points obtained during each MO-ASMO refinement. (d)
Convergence in Euclidean distance (ED) and hypervolume (HV) metrics.

comparative advantage over standard SBO procedures, which first fit the surrogate model to

the constraint function and then run the optimization.

The results of case P3 using the constrained sampling technique are shown in Fig. 4.8.

As shown in Fig. 4.8a, the Pareto-optimal solutions obtained by the MO-ASMO algorithm

with 199 expensive full model evaluations are significantly superior to the solutions obtained

by other direct optimization methods. Even with 21,001 function evaluations, the NSGA-II

algorithm failed to obtain solutions where f2 values are in between -0.82 and -0.45, while the

MO-ASMO algorithm quickly obtained the solution of the same region within 5 iterations

(see Fig. 4.8c). The DO-EC method could not even properly explore the feasible region. Only
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Figure 4.9: Comparison of results for case P3 with and without using the constrained sampling
strategy. (a) Comparison of Pareto-optimal solutions. (b) Comparison of full model results
during the MO-ASMO run.

one suboptimal solution point was obtained, shown as a circle in Fig. 4.8a.

In this problem, the proposed MO-ASMO algorithm demonstrates an advantage that

stems from utilizing the sampling method that enforces inexpensive constraints during the

sampling stage. Figure 4.9a shows a comparison of Pareto sets obtained with and without

using this sampling technique. The MO-ASMO algorithm converged with 199 expensive

full model evaluations (144 feasible and 55 infeasible points) using this sampling technique.

However, without using this technique, the algorithm could not obtain an acceptable set of

solutions throughout the entire objective function space even after 232 expensive full model

evaluations (14 feasible and 218 infeasible points, see Fig. 4.9b). The advantage of enforcing

the inexpensive constraints during the sampling stage could be utilized in other problems

when the range or shape of constraint functions is unknown or challenging to be modeled by

standard surrogate modeling techniques.

4.5.4 P4: DTLZ1 Function

DTLZ1 function [107] is an unconstrained MOP that has flexibility both in number of decision

variables and objective functions. As was demonstrated in the original introduction of this

test problem in Deb et al. [107], we started solving this problem with 3 objective functions
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Figure 4.10: Summary of results for case P4: DTLZ1 function. (a) Comparison of solutions
using different methods. (b) Solutions viewing at a direction parallel to the plane of true
Pareto frontier. (c) Solution points obtained during each MO-ASMO refinement. (d)
Convergence in Euclidean distance (ED) and hypervolume (HV) metrics.

and 12 design variables by setting M = 3 and k = 10. Figure 4.10 shows the results of case

P4. As shown in Figs. 4.10a and 4.10b, the solutions obtained by the MO-ASMO algorithm

are close to those obtained by other DO methods, but with significantly fewer full model

evaluations (MO-ASMO: 218, DO-EC: 4,670, NSGA-II: 153,000). Solutions obtained by

DO-EC are closest to the utopia point and are uniformly distributed, while those obtained

by the MO-ASMO method are clustered and slightly dominated by the solutions of other

methods. The MO-ASMO and the NSGA-II algorithms suffered difficulty in obtaining exact

anchor points, while the DO-EC method directly obtained the exact anchor points (although

a large number of the full model evaluations were required). An evolution of the solution

95



Figure 4.11: Pareto-optimal solutions of P4: DTLZ1 function with 5 objective functions and
14 decision variables. (a) Solutions obtained using the MO-ASMO algorithm. (b) Solutions
obtained using the NSGA-II algorithm.

in the objective function space is illustrated in Fig. 4.10c, and the convergence metrics are

shown in Fig. 4.10d.

Since this problem is scalable, we also tested the MO-ASMO algorithm using M = 5 and

k = 10. Solutions obtained by the MO-ASMO and NSGA-II are compared in Fig. 4.11. The

MO-ASMO algorithm evaluated the full model 218 times, while DO using NSGA-II needed

303,000 evaluations to achieve solutions with a similar distribution range. This demonstrates

that the MO-ASMO algorithm is highly efficient for problems with a small to a moderate

number of objective functions (5 for this problem), and a moderate number of decision

variables (14 for this problem).

4.5.5 P5: Quarter-Car Suspension Design Using Viscoelasticity

Quarter-car suspension design using the VED problem is a simulation-based practical en-

gineering design optimization problem. The problem has 3 inexpensive and 2 expensive

inequality constraints. The inexpensive inequality constraints are functions of the decision

variables, while the expensive inequality constraints are functions of the objective function

values. Figure. 4.12 shows the results of case P5. Computational cost for each simulation is

relatively high compared to the mathematical test problems; thus, it is impractical to solve
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Figure 4.12: Summary of results for case P5: quarter-car suspension design using viscoelastic
damper problem. An inexpensive subset of constraint functions is enforced during the
sampling stages. (a) Comparison of solutions using different methods. (b) Full model results
during the MO-ASMO run. (c) Solution points obtained during each MO-ASMO refinement.
(d) Convergence in Euclidean distance (ED) and hypervolume (HV) metrics.

this problem using exhaustive MOEAs.

Pareto-optimal solutions of the MO-ASMO and DO-EC in the objective function space

are compared in Fig. 4.12a. The MO-ASMO performed 146 full model evaluations (92 feasible

and 54 infeasible, see Fig. 4.12b) to obtain the Pareto set requiring 43 minutes of computation

time using all 8 threads of an Intel� i7-6700HQ� CPU. However, even using 20 times more

evaluations of the full model (3,180 times total, requiring over 12 hours using the same CPU),

the DO-EC method could only obtain solutions that were suboptimal and dominated by

those obtained by MO-ASMO. DO using a gradient-based optimization algorithm is only

effective for obtaining anchor points for this problem. As we see in Fig. 4.12c, the range
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Figure 4.13: Solutions for case P5 visualized in parametric design space and material function
space. (a) Solution visualized in Maxwell model parameter space. (b) Solution visualized in
viscoelastic relaxation kernel function space. Plot line intensity corresponds to circle intensity
in Fig. 4.12a marking the MO-ASMO solutions in the objective function space.

of performance metrics in the objective function space is larger than the range over which

the Pareto set is located. We see continuous enhancement of solutions as the number of

MO-ASMO iterations increases, which is also shown in the convergence plot in Fig. 4.12d.

Select solutions are visualized in Gm–λm and G (τ)–τ spaces, as shown in Fig. 4.13. Line

color intensity used in these plots corresponds to the line intensity of circle markers in

Fig. 4.12a, indicating the corresponding solutions in the objective function space. These

rheological characteristics presented in Fig. 4.13 could be used to fabricate materials for

designing the VEDs for automotive suspensions optimally.

4.5.6 P6: Design of Viscoelastic Lubricant and Texture

Geometry Using Giesekus Fluid

We have formulated the simultaneous design problem of viscoelastic lubricant and texture

using the Giesekus fluid model in Chapter 7; the problem was solved in the previous literature

using an earlier version of the MO-ASMO algorithm [13]. This problem has a relatively large

number of constraints that make the design space very complicated. In addition, the physics

solver exhibits numerical instabilities under certain conditions, resulting in frequent function

evaluation failures during the optimization process. Here, we present the MO-ASMO features
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Figure 4.14: Summary of results for case P6: design of viscoelastic lubricant and texture using
the Giesekus fluid problem. An inexpensive subset of constraint functions is enforced during
the sampling stages. (a) Comparison of solutions using different methods. (b) Obtained
designs located at the anchor points in the objective function space. (c) Solution points
obtained during each MO-ASMO refinement. (d) Convergence in Euclidean distance (ED)
and hypervolume (HV) metrics.

that enabled this problem to be solved efficiently by introducing an in-depth analysis of the

corresponding results.

The MO-ASMO algorithm evaluated the full model 4,660 times. All the designs explored

by the MO-ASMO algorithm were feasible in terms of predefined constraints. However, due

to the numerical solver’s instabilities, it was unable to obtain full model solutions for 986

design points. These failed design points are incrementally provided at each iteration to the

optimization algorithm to reduce exploration of design space regions that are likely to result

in solver failure. This reduction is achieved through iterative refinement of design space

boundaries constructed via SVDD.
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Since arbitrary design points have very low (nearly zero) probability of satisfying all

the constraints for this problem, the NSGA-II algorithm, which does not utilize constraint

information when obtaining populations for the next iteration, struggles to push the Pareto

frontier to the actual solution range, as shown in Fig. 4.14a. The MO-ASMO algorithm also

required many iterations and a significant number of full model evaluations to converge to a

good solution set, but this is not abnormal considering the well-known curse of dimensionality

issue with respect to the number of design variables and constraints. The obtained texture

shapes (at the anchor points) align with the results presented in the previous literature,

where the design with lower friction shows deeper flat texture, and the design with higher

load-carrying capacity exhibits spiral blade-like texture that converges fluid pressure toward

the center of the disk, as illustrated in Fig. 4.14b.

4.5.7 Discussion on Sampling for Exploration and Exploitation

The purpose of adaptively refining the surrogate model is to obtain an accurate solution

across the regions where Pareto-optimal designs are located. Sampling for the exploration of

the entire design space has the purpose of finding better possible solutions in the unknown

design space in a global manner. To complement global exploratory sampling, sampling for

the exploitation of the predicted solution region has the purpose of obtaining more accurate

and improved-performance solutions. A balance between these two sampling strategies is

crucial to further reduce the number of expensive full model evaluations, while improving

the probability of finding a global and accurate solution. This balance also should evolve

over iterative refinement, since the exploration is critical for early iterations, but not in the

later stage of surrogate model refinement.

However, this balance cannot be easily determined a priori by the specifications of the

problem, such as the number of design variables, objective functions, or constraint functions

associated with the problem. The optimal balance depends highly on the characteristics of
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Figure 4.15: Predicted Pareto-optimal solutions as the MO-ASMO algorithm refines the
surrogate model. Numbers of initial and update (including validation) samples are 4 and 8
per each iteration. The solution was globally accurate as early as at the second iteration. (a)
and (b) Locations of Pareto set in the design space for iteration #1–4 and #5–10. (c) and
(d) Locations of Pareto set in the objective function space for iteration #1–4 and #5–10.

each problem. For example, the multiobjective sphere function, presented as:

f =

[
2∑
i=1

(xi − 2.5)2 ,
2∑
i=1

(xi + 2.5)2

]
(4.20)

has two independent unimodal function shapes, and the optimal solution is a straight line

connecting the points (−2.5, 0) and (2.5, 0). Unlike the more challenging problems presented

in the earlier sections, the Pareto-optimal solutions’ location can be identified easily with

very few samples. As shown in Fig. 4.15, the MO-ASMO algorithm found the Pareto-optimal

solution at the second iteration with a coarse level of accuracy.
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Figure 4.16: Convergence of MO-ASMO iterative refinement is presented for different
exploitation and exploration sampling ratios, based on P2: the Osyczka and Kundu problem.
(a) Convergence is compared using the ED error ε metric for different sampling ratios. (b)
Pareto sets obtained via MO-ASMO for a varied number of iterations (k = 3, 5, 7, 10, 20) and
different sampling ratios are compared.

Although the framework we developed currently does not include a mechanism for adap-

tively adjusting the balance between exploitation and exploration, we tested and compared

the error, and the Pareto set convergence for different balance ratios, based on the P2: the

Osyczka and Kundu problem. Figure 4.16 compares the ED error and the shape of the Pareto

set in a magnified region in the objective function space for a varied number of iterations

and various ratios between the exploitation and the exploration samplings. The balance
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between the exploitation and the exploration is defined as the ratio of new sample points at

each MO-ASMO iteration, placed according to the sampling purposes. Since the exploration

sampling is based on semi-randomized LHD, it is very difficult to characterize convergence

using only a few tests. However, in Fig. 4.16a, errors for all different ratios have a decreasing

trend as the iteration number increases. A few cases, such as 4:6 (4 samples for exploitation

and 6 samples for exploration), exhibit oscillatory convergence characteristics. Also, we find

that an extremely large ratio for exploitation helps the solution to converge faster compared

to other cases, such as the 8:2 and 9:1 cases. Problems with low dimensionality typically do

not require a large number of exploration samples to obtain a rough approximation of where

the optimal solutions are likely located in.

Figure 4.16b shows a magnified view of the Pareto set for selected iterations (k =

3, 5, 7, 10, 20) for each distinct balance ratio. At iteration 20 (yellow), most cases have

converged to the true solution, which is taken to be the result obtained after a large number

of generations using the NSGA-II. However, intermediate solutions differ across distinct

cases. As we pointed out in the analysis of Fig. 4.16a, MO-ASMO exhibits some convergence

difficulties when sample points are allocated equally to exploitation and exploration. One

possible approach for resolving this problem is the observation that the number of sample

points for these two categories may vary concerning how well the surrogate model represents

the trend of global responses, such as inflections, convexity, modal characteristics, and

monotonicity. Here, MO-ASMO has the potential to be improved by utilizing adaptive

balance adjustment during the surrogate model refinement iterations, and ongoing study will

address this potential improvement mechanism.

4.6 Conclusions

We developed MO-ASMO, an SB-MOP solver framework, with novel efficient sampling

strategies for challenging MOPs. The developed sampling strategies address shortcomings of
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methods often used in conventional SBO algorithms, specifically for HEB simulations with

tightly-constrained feasible domains.

The sampling method developed for design space exploration is utilized both in the initial

and the update sampling stages. When constraints exist that are functions of the design

variables and solved separately from the expensive functions, enforcing these constraints in

the sampling stage saves a significant amount of computational effort by avoiding expensive

function evaluations that would not be valuable for finding solutions. Thus, solving an

optimization subproblem that moves the samples toward the feasible domain before running

any expensive functions is effective specifically for tightly-constrained problems, which is

demonstrated with the test problems P3 and P6 in Section 4.5.

Also, the sampling method developed for exploitation of predicted solution regions is

utilized in the update sampling stage to further enhance the solution accuracy, and to move

the approximate Pareto frontier toward better solutions. An FDL-inspired sample placement

technique is presented to help place new samples near, but not on, the predicted solution

set to enhance better prediction of the Pareto frontier in the next iterative surrogate model

refinement. This strategy ensures that new samples are not just duplicates of already-

predicted Pareto set points, but improves the knowledge in the predicted Pareto frontier’s

vicinity, helping faster convergence. As demonstrated with the P2 and as shown in Fig. 4.16,

the convergence rate was faster at around iteration number of 10 to 15 when we use more

samples for exploitation than exploration. However, this result also suggests that the balance

between exploration and exploitation should be adaptively adjusted throughout the iterative

refinement procedure.

For problems with frequent simulation failures, or that have implicit constraints that

cannot be known in a priori, an adaptive constraint generation and management strategy

using the SVDD technique is proposed in this study. Without this technique, the authors

could only obtain significantly suboptimal solutions for the combined texture and fluid design

problem given in P6. Regardless of methods, including SBOs and MOEAs, the best possible
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solution obtained without this novel constraint management technique was similar to the

solution indicated by the ‘NSGA-II’ markers (+) in Fig. 4.14a, since the optimizer wasted a

significant amount of computational effort on invalid inputs that led to simulation failures,

and these solution strategies could not learn from those failed simulations. However, with the

SVDD technique encapsulating the regions with many invalid inputs for sampling methods

and optimizers to avoid, we observed significant improvement over the Pareto frontier, while

limiting the number of expensive full model evaluations to a reasonable level.

The developed MO-ASMO framework has demonstrated the effectiveness of two novel

sampling strategies and a novel constraint management strategy in a combined way using

a total of 6 test problems. This solution framework is expected to support solution of a

wide range of practical simulation-based design optimization problems, extending its impact

beyond the test problems presented in this study. Using the MO-ASMO framework, we expect

to explore new types of designs with previously unexploited mechanisms to achieve new

performance levels or functionalities in many other engineering design problems. However,

there are many gaps beyond the scope of this study that could improve the SB-MOP solvers.

Ongoing work is addressing the application of this framework to higher-dimensional problems.

Beyond heuristic sampling strategies, mathematical frameworks, such as the high-dimensional

model representation (HDMR), could be utilized to further alleviate difficulties arising from

the curse of dimensionality [116]. Also, a hybrid SBO-DO approach may further enhance

the efficiency of the MO-ASMO without relying solely on sampling strategies that involve

stochastic elements. Finally, a deeper investigation of balancing exploitation and exploration

should be conducted to enhance our understanding of how best to use the MO-ASMO

framework for challenging HEB MOPs, aiming to reduce the required number of full model

evaluations, while still improving the likelihood of identifying globally optimal solutions.
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Chapter 5

Numerical Design With Viscoelasticity:
Survey, Efficient Strategies, and Outlook

5.1 Summary

Design with and of viscoelastic (VE) materials exhibits various challenges. These challenges

often come from function-valued material properties, denoted as material functions. This

study explores the stress-strain relation of linear viscoelastic (LVE) materials, their models

based on Boltzmann relaxation modulus functions and its design implications. Also, various

numerical methods are surveyed and analyzed, which solve the stress-strain relation that

contains the ‘fading memory’ concept of the Boltzmann relaxation modulus function. The

Boltzmann stress relaxation concept introduces a convolution integral term in the stress-strain

relation, which is often a term that is included in differential equations, making overall system

governing equation an integro-differential equation (IDE). In this study, a frequency-domain

method and various time-domain methods are compared. Also, several efficient numerical

methods, including the time-domain truncation method and the linear time-invariant state-

space (LTISS) system approximation of the convolution integral, and the derivative function

surrogate modeling (DFSM) implementation, along with the LTISS system approximation

of the convolution integral, to further mitigate computational effort for expensive dynamic

system design problems. Two numerical cases are demonstrated. Prony basis functions are

utilized to fit the relaxation modulus function to obtain the LTISS system that approximates

the true response of the convolution integral. Also, the time-domain truncation method is

demonstrated using a spacecraft attitude control design problem where the system is assisted

by a passive viscoelastic damper (VED).
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5.2 Introduction

Engineering design with [117–120] and of [12–14, 121, 122] viscoelasticity exhibits unique

difficulties regarding the materials’ characteristics and their responses to the external input.

Conventional materials, such as linear elastic solids and Newtonian fluids, are well described

by simple constitutive equations with constant-valued material properties. Although these

material properties can depend on operating conditions (e.g., temperature or external

pressure), these values remain constant throughout analysis if the operating conditions are

controlled. However, the viscoelastic (VE) materials or other class of complex materials,

including soft solids, fluids with polymers, suspensions of particles or droplets, or solutions

exhibit ranges of different behaviors at the same time, and those behaviors can be functions

of timescale, frequency, stress amplitude, or many other quantities [112, 123]. The material

constitutive models and analysis framework should consider these function-valued material

properties and their mechanical relationships.

Function-valued material properties (or material functions, hereafter) govern the behaviors

of these complex materials. Select examples of material functions include (1) shear-rate

dependent viscosity (η (γ̇)) that describes shear thinning and shear thickening, (2) shear-rate

dependent normal stress coefficients (Ψ1 = N1 (γ̇) /γ̇2, Ψ2 = N2 (γ̇) /γ̇2), (3) frequency-

dependent storage and loss moduli (G′ (ω), G′′ (ω)), and (4) time-dependent relaxation

modulus and creep compliance (G (t), J (t)) [112]. Many rheological constitutive models

utilize these material functions to connect the materials’ characteristics to the mechanical

equations to express continuum-level system behaviors. Examples of these constitutive

equations are the Criminale-Ericksen-Filbey (CEF) model and the Giesekus model utilized

in Chapter 7. Rheological materials can be characterized using various visco-rheometric

techniques (e.g., cone and plate rheometry with a shear-rate sweep or small-amplitude

oscillation frequency sweep) to obtain tabular values of appropriate material functions.

Rheological constitutive models can be fitted with the obtained material functions, providing
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required physical quantities (e.g., shear stress tensor τ) to analyze the continuum-level or

system-level governing equations.

However, the use of rheological material functions or constitutive models is not straight-

forward in material design problems; in particular, the material design problem is the inverse

process of the analysis problem described above. Arbitrary function shapes do not guarantee

physically-realizable materials. Furthermore, many constitutive models also do not provide

material constraints that limit the parameters to remain in the realizable design space. Thus,

constraining the material design within a realizable material domain range is a challenging

problem.

In addition, due to certain material characteristics, some classes of materials require a past

transient history of states (e.g., stress, strain, strain rate) to predict future material states,

meaning that the current state is not enough to compute the future state of the material

behavior. An example of such a class is the set of VE materials. In the time-domain analysis

of the VE materials, a convolution integral is required to describe the mechanical behavior

of the material’s memory effect, unless the analysis can be converted to frequency-domain

analysis with periodic external input. These convolution integral equations are generally

computationally expensive to solve, and in many cases, they need to be approximated in a

less expensive form for practical solution requirements.

In this study, we review and compare available methods that could be applied to solve

design problems with VE materials that exhibit the difficulties described above. We also

present demonstrations of several different approaches for designing material systems with

viscoelasticity to discuss and compare their advantages and disadvantages. Also, we limit our

focus to linear viscoelastic (LVE) materials. Extending the methods discussed here toward

nonlinear viscoelasticity is beyond the scope of this study.
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5.3 Linear Viscoelasticity

5.3.1 Stress-Strain Relation for Linear Viscoelastic Materials

Rheological materials and their responses can be classified regarding their characteristic scales.

With two dimensionless groups, the Deborah number (De = λ/tchar) and the Weissenberg

number (Wi = λγ̇), the classification of rheologically-complex materials can be mapped into a

distorted two-dimensional space, called a Pipkin space [124]. λ is the relaxation time, tchar is

the characteristic time or the observation time, and γ̇ is the shear-rate. Detailed explanations

of the dimensionless groups and the Pipkins space are given in Sections A.1 and A.2 of

Appendix A, respectively. The VE materials respond to an external force or displacement over

time with a memory effect, where the De number characterizes this behavior. Specifically,

LVE materials exhibit this memory effect in their stress-strain relation within the limit of

small amplitudes (Wi� 1).

A one-dimensional stress-strain relationship of LVE materials can be described in the

Riemann-Stieltjes integral, with the concept of a fading memory that Boltzmann [125]

proposed, given as:

σ (t) =

∫ t

−∞
G (t− t′) dγ (t′) , (5.1)

where σ is the stress (we use σ in this chapter in replace of ς for convenience), G is the

relaxation modulus (also named Boltzmann function or memory kernel), and γ is the shear

strain. For continuously-differentiable γ (t), the above Riemann-Stieltjes integral can be

represented with the standard Riemann integral, given as:

σ (t) =

∫ t

−∞
G (t− t′) dγ (t′) =

∫ t

−∞
G (t− t′) γ̇ (t′) dt′, (5.2)

where γ̇ is the shear-rate. Note that this one-dimensional equation can be expanded to a
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three-dimensional version of the equation, given as:

σ (t) =

∫ t

−∞
G (t− t′) γ̇ (t′) dt′, (5.3)

where σ is the stress tensor, and γ̇ is the rate of the strain tensor. Within the LVE assumption,

a component of σ is only coupled with the same component of γ̇; thus, we can safely use the

one-dimensional equation given in Eqs. (5.1) and (5.2) to generally represent the behavior of

the LVE materials. With a change of variable s = t− t′, the convolution integral becomes:

σ (t) =

∫ ∞
0

G (s) γ̇ (t− s) ds. (5.4)

In the case where no strain history exists (e.g., the material is relaxed for enough time before

testing), then the integration range of Eq. (5.4) reduces to (0, t) in place of (0,∞).

As we see in Eq. (5.3), the stress σ at time t requires the entire history of the shear-rate

γ̇ from time 0 to t, or if there is a strain history before the initial time, the required history

of the shear-rate is the time range from −∞ to the current time t. Thus, in time-marching

dynamic simulations with the LVE materials or elements, the entire history of at least a

subset of appropriate states is required for current step computations. This property of VE

materials significantly increases the simulation problem computational expense, which is

amplified when used in conjunction with design optimization.

5.3.2 Boltzmann Relaxation Modulus Function in Design

The Boltzmann [125] relaxation modulus function (or memory kernel function) G(t) represents

the material’s stress relaxation strength over time after strain is applied. Equation 5.4 and

G(t) do not intrinsically characterize specific classes of materials, so this model can be

considered as a material-agnostic material description. Since the material function shape

or values can be completely arbitrary, directly designing the material function demands
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additional constraints that externally provide additional information guides the designed

function to exhibit real material behaviors.

The direct design of the relaxation modulus function shape opens the full set of possibilities

for finding optimal material designs, and can be thought of as a highly-flexible VE material

design representation. However, this approach may generate relaxation modulus functions

that are not physically realizable via mechanisms that give rise to real VE materials. This

direct design representations has been used in a few previous studies. Rao and Allison [122] use

direct optimal control methods, including a single-shooting method and a direct transcription

(DT) method to directly manipulate the function shape of the relaxation modulus to find an

optimal LVE material design solution. An additional set of constraints was added to guide

the designed relaxation modulus function G (t) to be monotonically-decreasing [126]. This set

of constraints prevents the design solution from violating physics and helps to ensure ‘fading

memory’ behavior, although this constraint does not always guarantee that the relaxation

modulus function is realizable.

A more common design technique is to utilize parametric models that have physical

meanings. The LVE material models have their own mechanical analogs using combinations

of linear springs and dashpots [123]. The Maxwell model is the simplest material model that

describes the LVE fluids, and this model’s mechanical analog is a series connection of one

linear spring and one linear dashpot. The Kelvin-Voigt model is another simplest material

model that describes LVE solids. Again, this model can be described in the mechanical

analog as a parallel combination of the linear spring and the linear dashpot. These material

models can be used for parameterizing the relaxation modulus function. For a linear dashpot,

the relaxation modulus function can be represented as:

G (t) = ηδ (t) , (5.5)

where η is the dashpot damping coefficient, and δ (t) is the Dirac delta function. Interestingly,
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Eq. (5.5) applies exactly to Newtonian fluids. Designing Newtonian fluids within the

framework of the Boltzmann relaxation modulus function is equivalent to obtaining a single

design variable η to minimize a cost function or maximize the system performance. Moving

to the Maxwell fluid model, the relaxation modulus function can be represented as:

G (t) = Ge−t/λ, (5.6)

where G is the Maxwell relaxation modulus constant or the Maxwell spring constant, and λ

is the relaxation time. However, this single-mode Maxwell model is limited to approximation

of materials without dispersed relaxation times, limiting the material’s polydispersity index

(PDI) of the relaxation times to 1 [127]. For materials with multiple relaxation timescales,

this model can be extended to the multimode formulation, given as:

G (t) =
n∑
i=1

Gie
−t/λi . (5.7)

Corman et al. [12] presented a design framework incorporating LVE using the discrete Prony-

series VE material model, also known as the multimode Maxwell model, as well as the critical

gel model. The study presented possibility that a parameterized material function could be

utilized as a design target for engineering design. Similarly, Lee et al. [67] presented a quarter

car suspension design with a viscoelastic damping element using the multimode Maxwell

model; this was used as a test problem for a new design optimization algorithm. The study

utilized different numbers of modes to compare computational time and differences in results

when used in conjunction with optimization. As the number of modes was increased, the

computational expense increased significantly, limiting the allowable number of modes in

design studies not by material characteristics, but by available computing resources. Here,

a parameterization of the material function does not significantly increase the number of

parameters, but increases the capability of representing a wide range of the dispersed nature
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of the relaxation characteristics.

As discussed in Section 6.3.2 of Chapter 6, the relaxation strength can be a continuous

spectrum with a range of relaxation timescales, given as:

G (t) =

∫ ∞
0

H (λ)

λ
e−t/λdλ =

∫ ∞
0

H (λ) e−t/λd lnλ, (5.8)

which is a more general form that describes materials with ranges of relaxation times.

Distributed relaxation times and strengths that exist in real viscoelastic materials can be

described more naturally using this continuously-distributed spectrum H(λ), with various

models that parameterize the spectrum using a handful number of variables. See Table 6.1 of

Chapter 6 for a select list of continuous relaxation spectra models and their parameters. Some

models have statistical distribution parameters that are not closely related to the physics

of material microstructural mechanics, e.g., the log-normal distribution model [128–130].

However, many other models have parameters that connect the material model shapes to

the physically-meaningful quantities more closely, such as peak relaxation strength and

its timescale, changes of relaxation strength and timescale boundaries of different regimes,

or molecular weight-based relaxation times, e.g., the modified Baumgaertel-Schausberger-

Winter (BSW) model [131]. Although many studies utilize the continuous relaxation spectra

representation to fit certain materials of interest, designing the material properties with this

concept is in a very early-stage of investigation, and few relevant publications are currently

available. Corman and Ewoldt [132] proposed the use of a continuous relaxation spectrum for

designing LVE materials, and presented an Ashby-style plot for designers to intuitively access

and compare characteristics of LVE materials. Based on this work, Lee et al. [121] presented

the use of the continuous relaxation spectra and the Ashby-style plot within the larger top-

down systems design framework, beginning from the system-level objectives, mapping down to

the desired material rheology, and ultimately connecting toward the material microstructure

design with a bi-directional exchange of information between different design levels.
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Although many parameterized material models and spectrum models utilize physically-

meaningful parameters to constrain the material functions to have characteristics of existing

materials, these parameters are still not enough to constrain the design space to be confined

within the physically achievable material options. There are a few possible approaches that can

help resolve this issue. One of them is the use of data-driven algorithms with experiment-in-

the-loop (EIL) design optimization. While designing the systems and materials simultaneously,

data-driven algorithms can check if the obtained design candidates are physically feasible

using the automated (or human-assisted) experiments to perform (1) material synthesis, (2)

material characterization, and using the data obtained from the experiment (3) provide design

space boundaries. In different contexts, a few studies addressed similar approaches. Lee et al.

[13] utilized a support vector domain description (SVDD)-based data-driven approach to

adaptively generate and manage implicit constraints to avoid numerically-instable design

spaces. Deodhar et al. [133] proposed a theoretical framework for the EIL plant and controller

optimization for optimally-designing a system with highly-nonlinear dynamics. Similarly, the

materials design could take advantage of this adaptive constraint generation and management

scheme to find the feasible design space, and this work is left for future exploration.

A selection of the right material model is also an important topic for designing with

material systems. Design-appropriate material models and their general criteria are addressed

in Corman et al. [12], Schuh et al. [36], and Corman and Ewoldt [132]. However, these

studies are limited to their own material model choice and do not cover a comprehensive

model comparison and selection framework. Outside of the design context, a wide range

of previous literature exists that discusses fitting parameters, selecting, and comparing

rheological models with, especially, experimentally-obtained data. However, the majority

of these previous studies are only done in the context of accurately simulating the existing

and already-characterized materials. Jansen [134] worked on fitting the material relaxation

modulus function with different material models and compared to the experimental data.

Kimanzi [135] worked on selecting viscoelastic materials for impact absorption. Freund and

115



Ewoldt [136] discussed a model selection strategy using Bayesian inference, addressing the

decision-making between a more robust model and a more accurate model. Considering

the gap between the analysis and the design with material systems, a study needs to be

performed for the rheological material model selection and decision-making regarding not

only robustness and accuracy, but also design-appropriateness and feasibility of the material

models.

5.4 Survey and Analysis of Numerical Methods for

Convolution Integrals

5.4.1 Frequency-Domain Method

Computing stress-strain relations with LVE materials is costly due to its convolution integral

term in Eq. (5.4). Many previous studies transformed the convolution integral term from the

time-domain to the frequency-domain to mitigate the computational cost, and to efficiently

solve the response spectrum of the system [12, 112, 123, 137, 138]. Consider an oscillatory

shear flow between two parallel plates with gap height h, and the top plate is sinusoidally

oscillating with small amplitude δ sinωt, where δ � h. Then the shear strain and shear-rate

are defined as:

γ (t) =
δ

h
sinωt = γ0 sinωt, and (5.9a)

γ̇ (t) =
δ

h
ω cosωt = γ̇0 cosωt, (5.9b)

where γ0 = δ/h� 1 and γ̇ = ωγ0. The shear stress-strain relation then becomes:

σ (t) =

∫ ∞
0

G (s) γ̇ (t− s) ds (5.10)

=

∫ ∞
0

G (s) γ̇0 cosω (t− s) ds (5.11)
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=

∫ ∞
0

G (s) γ̇0 [cosωt cosωs+ sinωt sinωs] ds. (5.12)

The dynamic storage and loss moduli are defined with the relaxation modulus function, given

as:

G′ (ω) = ωη′′ (ω) = ω

∫ ∞
0

G (s) sin (ωs) ds, (5.13a)

G′′ (ω) = ωη′ (ω) = ω

∫ ∞
0

G (s) cos (ωs) ds, (5.13b)

and combining these dynamic moduli into the stress-strain relation, Eq. (5.12) becomes:

σ (t) = G′ (ω) γ0 sinωt+ η′ (ω) γ̇0 cosωt. (5.14)

The interrelation between the above dynamic storage and loss moduli are constrained by the

Kramers-Kronig relations [112], given as:

G′ (ω)−G′∞ =
2

π

∫ ∞
0

sG′′ (s)

ω2 − s2
ds, and (5.15a)

G′′ (ω) =
2ω

π

∫ ∞
0

G′ (s)

s2 − ω2
ds, (5.15b)

where:

G′∞ = lim
ω→∞

G′ (ω) . (5.16)

For some material models, including Newtonian fluid model, single- and multimode

Maxwell models, critical gel model, and continuous version of the Maxwell spectrum models,

the dynamic storage and loss moduli can be analytically derived from their material model

equations [112, 123]. The Prony series representing the M -mode Maxwell model can be
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represented in frequency-domain, given as:

G′ (ω) =
M∑
m=1

Gm
(λmω)2

1 + (λmω)2 , and (5.17a)

G′′ (ω) =
M∑
m=1

Gm
λmω

1 + (λmω)2 . (5.17b)

The relaxation modulus function G(t) with the continuous relaxation spectrum H(λ) can

also be represented in frequency-domain [123], given as:

G′ (ω) =

∫ ∞
0

ω sinωs

[∫ ∞
0

H (λ) e−s/λ
dλ

λ

]
ds (5.18a)

=

∫ ∞
0

ωH (λ)
dλ

λ

∫ ∞
0

e−s/λ sinωs ds (5.18b)

=

∫ ∞
−∞

(λω)2

1 + (λω)2H (λ) d lnλ (5.18c)

G′′ (ω) =

∫ ∞
0

ω

1 + (λω)2H (λ) dλ. (5.18d)

Integrating over the spectrum range (0,∞) can be computationally expensive with the

continuous relaxation spectrum H (λ), especially when the dynamic system needs to be

analyzed over a wide frequency range. In the frequency-domain, discrete spectrum models

with a limited number of modes (e.g., Eq. (5.17)) are significantly less expensive to compute

than the continuous spectrum model given in Eq. (5.18).

Despite its popularity in the rheology community, where the sinusoidal oscillatory loading

condition is widely used for characterizing the VE materials, this approach has a significant

drawback for use in the design of dynamic systems. Although periodic sinusoidal loading

conditions can be utilized to obtain frequency responses of the system, realistic dynamics

do not generally have this overly-simplified input profile. These time-dependent dynamic

systems require time-dependent VE computation, and will be discussed in the following

subsections.
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5.4.2 Time-Domain Integration of Convolution Integral,

Method 1

The most primitive, but computationally-expensive method is the direct integration of

convolution integral in the simulation. A dynamic system is generally represented in the

form of an ordinary differential equation (ODE), which can be conveniently converted to

standard state-space equation form, and the stress-strain (or force-displacement) relation

of the VE material incorporates the convolution integral. Combining the VE stress-strain

relation into the dynamic equation yields an integro-differential equation (IDE). For example,

when a dynamic system is represented as a simple ODE, given as:

mẍ (t) + FVE (t) + kx (t) = 0, (5.19)

and the VE force-displacement relationship is represented as a convolution integral, given as:

FVE (t) =
αF
αx

∫ t

0

G (τ) ẋ (t− τ) dτ, (5.20)

where αF is a geometric mapping parameter between force and stress (F = αFσ), and αx is a

geometric mapping parameter between displacement and shear strain (x = αxγ). Combining

Eqs. (5.19) and (5.20) yields:

mẍ (t) +
αF
αx

∫ t

0

G (τ) ẋ (t− τ) dτ + kx (t) = 0, (5.21)

which contains both integral and differential terms, making an IDE. When this equation is

discretized for numerical solution, the first and third terms in the left-hand side at discrete

time step k depend only on the single previous step k − 1. This is called a single-step

dependency. However, the second term in the left-hand side depends on the entire step

histories of previous states, demanding k number of previous trajectory data for each required
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state. When the current step k is moving forward, the size of the required previous trajectory

data increases proportionally. Assuming that we solve the integral term using a simple

quadrature method, the number of required numerical quadratures nq for the total number

of simulation time steps nt is:

nq =
nt (nt + 1)

2
∼ O

(
n2
t

)
, (5.22)

which is a quadratic time algorithm (O (n2)) with respect to time complexity [139]. Since this

method is the most straightforward approach, many dynamic simulation studies [140–142] and

a handful of design studies [14, 67, 121, 122] of VE materials utilized this direct integration

method, despite its large computational cost.

A discretized form of direct integration can be derived using the following steps. In the

single-step formulation, state values at the current time step (k+1) only depend on quantities

computed by state values at the previous time step (k), given as:

ξk+1 = ξk +
∆t

1!
ξ̇k +

(∆t)2

2!
ξ̈k + · · ·+ (∆t)n

n!
ξ(n)k +Rn, (5.23)

where ξ is a state vector, ∆t is the time step size, k is the time step number, and Rn ∼ (∆t)n+1.

This assumes that time steps are uniform. In practical implementation, the first-order term

is generally sufficient for dynamic simulation, although rarely some time-marching schemes

use the second-order term for more accurate time-domain integration. The direct integration

of the convolution integral term can be represented using a first-order time integration

approximation, given as:

ξk+1 = ξk + (∆t) ξ̇k (5.24a)

= ξk + ∆t

∫ tk

0

G (s) ξ
(
tk − s

)
ds (5.24b)
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= ξk + ∆t
k−1∑
i=1

∫ ti+1

ti
G (s) ξ

(
tk − s

)
ds, (5.24c)

where the integral term can be discretized with any suitable single-step quadrature method.

For example, the Euler method is applied to Eq. (5.24c), given as:

ξk+1 = ξk + ∆t
k−1∑
i=1

[
(∆t)G

(
ti
)
ξ
(
tk−i
)]

(5.25a)

= ξk + (∆t)2
k−1∑
i=1

[
Giξk−i

]
. (5.25b)

5.4.3 Time-Domain Integration of Convolution Integral,

Method 2

Diethelm and Freed [143] proposed that the computation of this convolution integral can be

enhanced using the property that the relaxation modulus functionG(t) is always monotonically

decreasing and asymptotically approaching zero. When the convolution integral is decomposed

to isolate the steady-state modulus, specifically:

σ (t) =

∫ t

0

G (τ) ẋ (t− τ) dτ = tG∞ +

∫ t

0

Ĝ (τ) ẋ (t− τ) dτ, (5.26)

where:

G∞ = lim
τ→∞

G (τ) and Ĝ (τ) = G (τ)−G∞, (5.27)

the convolution integral Ĝ satisfies the conditions required by the method proposed by

Diethelm and Freed [143]. The convolution integral part of Eq. (5.26) can be decomposed

into a sequence of integrals, given as:

∫ t

0

Ĝ (τ) ẋ (t− τ) dτ =

(∫ QT

0

+

∫ Q2T

QT

+ · · ·+
∫ QµT

Qµ−1T

)
Ĝ (τ) ẋ (t− τ) dτ, (5.28)

where t = QµT with T > 0, Q ∈ {3, 5, 7, · · · } is a quality parameter, and µ = logQ (tf/T )
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designates the subintervals in the integration. To reduce the number of required numerical

quadratures, the algorithm uses a different interval size for each interval of the convolution

integration given in Eq. (5.28), where a mesh size for each interval increases as the sequence

of interval increases. The numerical quadrature is performed with a mesh of h = TQn−1/S

for the n-th interval, where S ≥ 4 is the number of integration steps in each integration

interval. This variable interval scheme reduces the complexity of direct integration of the

convolution integral from the quadratic time to a linearithmic time (O (n log n)) with respect

to time complexity; this still is not highly efficient, but does produce a large decrease in

computational cost [139]. Readers are referred to Diethelm and Freed [143] and Freed [144]

for detailed algorithm and numerical method implementation descriptions.

5.5 Efficient Time-Domain Methods for Convolution

Integrals

5.5.1 Time-Domain Truncation Technique for Efficient

Computation

Theoretically, the stress relaxation modulus function needs to be computed for the interval

(0,∞) in Eq. (5.4). In many cases with time-domain analysis, the dynamic response of

the system is abrupt compared to the change in the relaxation modulus function. With

these fast-moving dynamics, the numerical integration needs to have a fine mesh for the

time-domain, which increases the computational cost (time and memory) significantly, and

becomes impractical in many cases. To resolve this issue, a time-domain truncation technique

is used in our previous work [14].

Depending on the rate of strength decay in the relaxation modulus function, a cutoff time

tα is defined with the following procedure:

1. define parameters: α = 10−3: cutoff factor, tα = 10−6: initial guess of the cutoff time.
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2. numerically solve log (G (tα))− log (αG (0)) = 0 for tα.

Then, solve the VE convolution integral in Eq. (5.4) only for the integration range of (0, tα),

which is an approximation of Eq. (5.4), but truncates very small memory effects that come

from the distant past (specifically, more than tα seconds prior), given as:

σ (t) =

∫ tα

0

G (s) γ̇ (t− s) ds. (5.29)

The computation time depends directly on the decay rate of the relaxation modulus function.

The time complexity still remains the same, but depending on how the integration is performed,

the actual integration time can be significantly reduced using this technique, e.g., O (n2) can

be reduced to O (n2/a), where the factor a � 1 is passively determined by the value of α

and the decay rate of G (t).

5.5.2 Linear Time-Invariant State-Space Approximation

Dynamic systems can be represented as a single or a set of differential equations, which can

also be generally transformed into a first-order derivative function using input, output, and

state vectors. In this case, the derivative function model can be represented in state-space

form, and once a dynamic system is represented in a state-space form, then there exist many

numerical integration techniques that can efficiently handle and solve linear and nonlinear

dynamic system simulation and design optimization problems [44, 145, 146].

The direct integration methods described in Sections 5.4.2, 5.4.3, and 5.5.1 add a significant

computational burden at each time step in the dynamic system simulation, because the

inner convolution integral term needs to be computed separately at each time step during

the integration of the dynamic system. This is even worse when used with the DT method,

since each time-domain nodal point has its own defect constraint that needs to be evaluated

multiple times before it reaches the converged solution. The DT method is highly efficient

only when the dynamics can be directly converted to the defect constraint, but, in this case,
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the VE stress-strain relation needs to be solved separately to provide information to the

defect constraint enforcement, and therefore, the numerical structure of the DT method

cannot be leveraged.

One strategy is to convert the convolution integral term in the single-step formulation using

a linear time-invariant state-space (LTISS) model that approximately follows the response of

the true convolution integral response [147–149]. This strategy is well-described in Herber

and Allison [148]. This approach also has been widely utilized in simulating dynamics with

ocean waves energy [150]. The Cummins equation [151], in the context of ocean wave energy,

parallels the VE convolution integral given in Eq. (5.4), where the radiation impulse-response

function (IRF) Kr (t) in the wave energy equation has exactly the same characteristics as

the relaxation modulus function G (t) has in the viscoelastic materials model.

Consider a convolution integral equation, given as:

y(t) =

∫ t

−∞
G(t− τ)γ̇(τ)dτ, (5.30)

where y (t) is the output, k (t) is the IRF, which can be an arbitrary kernel function (stress

relaxation modulus G (t), creep compliance J (t), or others in different contexts), u (t) is the

input, and ·̃ represents an approximation of corresponding variables. An LTISS model for

approximating the convolution integral in Eq. (5.30) can be represented as [149, pp. 64–66]:

y(t) ≈ ỹ(t) =

∫ t

−∞
G̃(t− τ)γ̇(τ)dτ = Cξ (t) (5.31)

where:

ξ̇ (t) = Aξ (t) + Bγ̇ (t) . (5.32)

Here, ξ is a vector of the n additional states, with matrices An×n, Bn×1, and C1×n that

comprise the LTISS system and is exact with G̃ (t).

To ensure the similarity between the original y (t) and the approximated ỹ (t) responses,
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the response values at the initial time point need to be enforced with an equivalence condition,

given as:

y (t0) = ỹ (t0) = Cξ (t0) . (5.33)

Solving the linear system described in Eq. (5.32), the general solution to the LTISS system

is given as:

ξ (t) = eA(t−t0)ξ (t0) +

∫ t

t0

eA(t−τ)Bγ̇ (τ) dτ, (5.34)

where eA is the matrix exponential, given as:

eAt =
∞∑
i=0

Aiti

i!
. (5.35)

The approximated IRF and the LTISS model are interrelated by the impulse response, given

as:

G̃ (t) = CeAtB. (5.36)

For a specified system, there are infinite possible LTISS models that approximate the

original convolution integral. However, there are certain useful standardized methods to find

appropriate matrices A, B, and C, and these methods are referred to as canonical forms

[149, p. 25, p. 159]. The companion form is one of these canonical forms, and given as:

A =



0 0 · · · 0 −a0

1 0 · · · 0 −a1

0 1 · · · 0 −a2

...
...

. . .
...

...

0 0 · · · 1 −an−1


, B =



b0

b1

b2

...

bn−1


, C =

[
0 0 · · · 0 1

]
. (5.37)

This form still maintains the generality of representing any arbitrary IRF, but with an

advantage that the required number of parameters is reduced compared to the most general

form, given in Eqs. (5.31) and (5.32).
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The dynamic system (denoted as a subscript ‘d’) with the LTISS system approximation

(denoted as a subscript ‘c’) can be combined into single state vector ξ =
[
ξ

d
, ξ

c

]T

. Then, the

discretized dynamic formulation is:

 ξ
d

ξ
c


k+1

=

 ξ
d

ξ
c


k

+

∫ tk+1

tk

 ξ̇
d

(
ξ

d
(τ) , ξ

c
(τ) , ud (τ) , xp

)
ξ̇

c

(
ξ

c
(τ) , γ̇d (τ)

)
 dτ (5.38a)

=

 ξ
d

ξ
c


k

+

∫ tk+1

tk

 Adξd
(τ) + Bdud (τ) + Ccξc

(τ)

Acξc
(τ) + Bcγ̇d (τ)

 dτ. (5.38b)

Since γ̇d is a scalar included in the state of the dynamic model, this variable can be considered

as a part of ξ. Then the discretized dynamic system formulation can be expressed as:

ξk+1 = ξk +

∫ tk+1

tk
Âξ (τ) + B̂u (τ) dτ, (5.39)

where:

Â =

 Ad Cc

Bc Ac

 , B̂ =

 Bd 0

0 0

 , u =

 ud

0

 , (5.40)

and some components of the matrices should be rearranged appropriately.

The LTISS system approximation can be utilized with some basis functions. One particular

useful type of basis functions is the Prony basis function (PBF) that appears in Prony’s

method, a signal fitting method for damped exponentials or sinusoids [152]. Consider a

particular basis function φ (t), used to construct both approximated IRF G̃ and the LTISS

system. The approximated IRF is constructed using the sum of N basis functions, given as

G̃ (t) =
∑N

i=1 φi. A single PBF has four parameters, and is given as:

φ(t, θ) = θ1e
−θ2t cos(θ3t+ θ4), (5.41)

where the basis function has an exponentially-decaying cosine wave with phase delay and
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variable amplitude. Without loss of generality, we assume θ1 > 0, θ2 > 0, θ3 > 0, and

0 ≤ θ4 ≤ 2π. Specifically, θ2 is set positive to ensure that limt→∞ G̃ (t) = 0. The LTISS

system approximation using the PBF requires two states for each mode, given as:

Aφ =

−θ2 θ3

−θ3 −θ2

 , Bφ =

sin θ4

cos θ4

 , Cφ =

[
0 1

]
, (5.42)

and can be superposed with multiple basis function parameters. The PBF can be reduced to

constrained submodels, including the Gola-Huges-McTavish (GHM) model, and the Prony

series function, which is also known as the generalized Maxwell model. These reduced models

are presented and described in Herber and Allison [148].

Unlike the direct integration methods presented in Sections 5.4.2, 5.4.3, and 5.5.1, the

LTISS system approximation has the Markovian characteristic that the current value of the

state depends only on the state of one previous step, meaning that the storage of state history

is unnecessary. Although fitting the LTISS model may require additional computational

effort, this characteristic of the method significantly reduces overall computational cost for

VE simulation and design optimization.

One large drawback of this method, from the perspective of application to VE material

design optimization, is that the matrices in the approximated LTISS system cannot be designed

directly. The matrices A, B, and C includes elements that are tuned to approximate the

original convolution integral, but directly manipulating values of these elements may lead the

model to exhibit arbitrary nonphysical behaviors, and even the stability of the model is not

guaranteed. Instead, the material function parameters should be designed, and the LTISS

system approximation can only be fitted after obtaining the relaxation modulus function G (t).

The LTISS system approximation may especially useful for design optimization problems

where the VE material properties are held fixed, but the dynamic interaction between the

VE material and other system elements must be modeled accurately and efficiently.
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5.5.3 Derivative Function Surrogate Model for Linear

Time-Invariant State-Space Approximation

With the LTISS system approximation explained above, the convolution integral equation

can be converted to a single-step method (also can be referred to as a Markov process).

This property enables the application of a wide range of solution methods based on efficient

numerical techniques. One challenge with LTISS system approximations is the addition of a

large number of auxiliary states. Novel strategies may exist to reduce approximation order,

while maintaining accuracy. Here, we suggest extending the derivative function surrogate

modeling (DFSM) method, introduced by Deshmukh and Allison [153], to solve design

optimization problems with dynamic systems with LVE materials to even further mitigate

the computational cost.

The DFSM approach is particularly useful when the dynamic system is complex, and the

derivative function evaluation consumes significant computational time. Examples of these

systems include nonlinear physics, such as flexible members, structural contact, fluid-structure

interactions, or systems with many components numerically interrelated with ODEs and

differential algebraic equations (DAEs). A practical example demonstrated that the DFSM

is particularly useful was the control co-design (CCD) of a wind turbine system [153]. Since

the LTISS system approximation presented in Section 5.5.2 and the LTISS system can also

be directly applied to the ocean wave systems, the DFSM strategy has a potential to provide

a computational benefit when utilized in the floating offshore wind turbine systems, where

the dynamics of the system is a result of many interactions between various components,

including a convolution integral term in the floating platform dynamics [154].

The surrogate model can be constructed with sample training points distributed in the

model input domain. Since the surrogate model is utilized for approximating the dynamics,

a large number of uniformly-distributed global samples is preferred for the initial sampling

stage, to provide good approximation over the entire range, and to reduce the number of
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refinement during the surrogate-assisted dynamic simulations. Training of the surrogate

model could be performed with possibly any surrogate modeling techniques. As we used

the Gaussian process surrogate model (Kriging) in the study presented in Chapter 4, it is

convenient to utilize the same technique for the DFSM for the LTISS approximation study.

Suppose we have a nonlinear dynamic system that has a vector function of system

derivative ξ̇
d

(
ξ (t) , xp

)
, and the surrogate model that approximates this derivative function

is denoted as ˜̇ξd

(
ξ (t) , xp

)
. Since the dynamic system is nonlinear, Eq. (5.38a) cannot be

expressed in the form of Eq. (5.38b); instead, we need to use the derivative function in the

dynamic system formulation, given as:

 ξ
d

ξ
c


k+1

=

 ξ
d

ξ
c


k

+

∫ tk+1

tk

 ξ̇
d

(
ξ

d
(τ) ,Ccξc

(τ) , ud (τ) , xp

)
Acξc

(τ) + Bcγ̇d (τ)

 dτ. (5.43)

Since the convolution integral part (denoted as subscript ‘c’) became linear and cheap to

solve, the derivative function of the dynamic part (denoted as subscript ‘d’) needs to be

approximated with the surrogate model ξ
d
≈ ξ̃

d

(
ξ

d
, ξ

c
, ud, xp

)
.

One observation here is that the surrogate model input dimension could be very high if

the numbers of states and control input are high. The surrogate model needs to be trained

by a significantly large number of training sample points due to the ‘curse of dimensionality’.

Therefore, this method can only be efficient for a problem with the expensive derivative

function, rather than a large-scale dynamic system.
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Figure 5.1: Relaxation modulus functions (kernel function) originally created by the analytical
equation and fitted using the LTISS are compared.

Figure 5.2: Simple simulation to obtain the stress with the sinusoidal strain rate input to the
viscoelastic element. Since simulation started from a rest state, the initial transient shows
unsteady behavior before it reaches steady periodic response.
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5.6 Practical Examples

5.6.1 Simple Demonstration of State-Space Approximation of

Linear Viscoelasticity

The study presented in this section aims to demonstrate an LTISS system approximation of

the VE relaxation modulus function, and to utilize the obtained approximated system for

simulation. First, a three-mode Maxwell model with following parameter values is fitted using

the LTISS system approximation method with Prony basis functions: G1 = 0.5, λ1 = 1/3,

G2 = 0.2, λ2 = 1/2, G3 = 0.1, λ3 = 2. The obtained LTISS is:

A =


−0.5 0.0 0.0

0.0 −3.0 0.0

0.0 0.0 −2.0

 , B =


−0.3162

0.7071

−0.4472

 , C =

[
−0.3162 0.7071 −0.4472

]
. (5.44)

With these three additional states, the computational time required for obtaining this

LTISS result was 4.24 [s], and this is the most time-consuming part in the LTISS system

approximation for the linear viscoelasticity. Once the fitting is completed, the use of the

obtained LTISS system approximation is a computationally efficient part. Figure 5.1 shows

the original material function G(t) and the fitted function G̃ (t) in the logarithmic scale plot.

The pattern search method was used for fitting the function by minimizing the sum of least

square errors until the optimality condition reached nearly machine precision.

Figure 5.2 illustrates the simulation results obtained from three different methods: (1)

trapezoidal quadrature using the direct integration, (2) more sophisticated adaptive numerical

quadrature performed with absolute tolerance criteria of 10−6 level using the Matlab integral

function, and (3) linear system of equations with three additional states fitted using the

LTISS system approximation. Although fitting takes some time, the simulation using the LTI

system is computationally very efficient. The LTISS system required only 0.16 [s] to solve the
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entire simulation, while the trapezoidal quadrature required 5.72 [s] with the direct integration

of the convolution integral. The most accurate, sophisticated numerical quadrature method

required 72.3 [s] for computing the same simulation. However, all numerical methods exhibited

essentially identical simulation results. Notably, the LTISS system approximation produces

an accurate solution with only three additional states.

5.6.2 Strain-Actuated Solar Arrays for Spacecraft Attitude

Control Assisted By Viscoelastic Damping

The study presented in this section aims to utilize passive viscoelastic damping to reduce

control system complexity for strain-actuated solar array (SASA) spacecraft attitude control

systems (ACSs). SASA utilizes high-frequency distributed actuation to actively control jitter

reduction. Relying on active damping alone, however, requires significant control system

complexity, which has so far limited adoption of intelligent structures in spacecraft control

systems. Here, we seek to understand how to modify passive system design in strategic ways

to reduce control system complexity using the LVE elements. A detailed problem definition

with a comprehensive explanation can be found in Lee et al. [14].

In this study, we use direct integration method 1 with the time-domain truncation

technique for more efficient computation. Rotational viscoelastic damping joints are modeled

with (1) two-dimensional shear stress-strain model (high-fidelity) and (2) one-dimensional

reduced-order model (low-fidelity). The high-fidelity model computes a transient rotational

shear flow equation derived from a full 3D Cauchy momentum equation. Because of the

numerical stability governed by the Courant-Friedrichs-Lewy (CFL) condition, the time step

size we used in this study was significantly small, resulting in the optimal control problem

being computationally expensive. Thus, we tested the time-domain truncation technique

here to solve the problem in a practical amount of time with limited computing resources.

Optimal Maxwell model material function parameters for the two-dimensional axisymmet-
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(a)

(b) (c) (d)

Figure 5.3: Spacecraft numerical model and revolute damping joints with 2D shear stress-
strain and 1D reduced-order models. (a) Full 2D spacecraft model with two solar panels using
a n-revolute-joint pseudo-rigid-body dynamic model (nR-PRBDM). (b) Conceptual design
of viscoelastic revolute joint damper. (c) 2D shear stress-strain fluid model of viscoelastic
revolute joint damper. (d) 1D reduced-order model of viscoelastic revolute joint damper.

ric model case are G∗0 = 0.943 [MPa] and λ∗0 = 1.36× 10−3 [s]. We anticipate these results to

be close to planned experimental data due to the fairly realistic model. The optimal control

design exhibits some higher-frequency oscillations to mitigate vibrations due to viscoelastic

material memory effects.

Optimal Maxwell model material function parameters for one-dimensional reduced-order

model case are G∗0 = 1.09 [MPa] and λ∗0 = 8.69× 10−4 [s], corresponding to a larger initial

stress and smaller relaxation time compared to the 2D axisymmetric model results. Control

trajectories do resemble those from the 2D model study, but with less pronounced oscillations.

The computational time required to solve for this model is significantly smaller (13 minutes

compared to 4 hours) with an Intel Xeon Gold 32-core CPU. This reduction in computational

expense would enable more extensive design studies, such as a longer time horizons for

multi-stage maneuvers. While control trajectories are sufficiently close to inform later design

activities, the difference between Maxwell model parameters is not small, corresponding to

133



(a) (b)

Figure 5.4: Optimal designs based on the 1D reduced-order models with varying maximum
control torque constraints. (a) Material function designs. (b) Corresponding control torque
designs.

distinct materials.

In both models, displacement trajectories satisfy the final time boundary condition with

a maximum constraint violation in the order of 10−8 or smaller. Using these results, the

original paper studied how the control system limits affect the viscoelastic damping design

changes, as shown in Fig. 5.4. When control system capability is limited, the optimal material

functions change to incorporate longer and stronger relaxation characteristics. Readers are

referred to Lee et al. [14] for detailed optimal solution data with discussions.

5.7 Conclusions

Various numerical methods are explored for simulating viscoelasticity, and potentially for the

use with integrated material system design. One-dimensional stress-strain relation with the

Boltzmann relaxation modulus function was analyzed. Then we evaluated the rheological

concepts that appeared in the context of LVE materials, and most importantly, evaluated

regarding the IDE with convolution integral terms, from the perspective of simulation-based
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material system design.

Several different numerical approaches for integrating the convolution term were discussed.

The most popular frequency-based method is briefly explained. This method is especially

useful with material characterization, since many rheological measurements are performed

using a frequency sweep of oscillatory loading conditions. However, from an integrated

material and dynamic system design perspective, frequency-based methods cannot predict

actual system behavior with the non-periodic transient inputs. Thus, we continue exploring

time-domain integration methods.

A direct time-domain numerical solution of convolution integral is very costly. Since

the material behavior depends on the entire previous stress-strain history, using this direct

integration in the simulation is expensive, and sometimes impractical to use in design opti-

mization. However, several variant integration methods are widely used. The most primitive

numerical integration of the convolution term exhibits O (n2) computational time complexity.

An improved direct integration method is also explained, which exhibits O (n log n) time

complexity. A time-domain truncation method was also introduced to further reduce the

computational time for direct integration methods.

Most importantly, the LTISS system approximation is introduced and demonstrated to

approximate the response of the convolution integral with a few additional state variables.

Construction of an appropriate LTISS for solving LVE in the time-domain significantly

reduces the computational time of dynamic simulation, which had been a critical barrier for

the use of LVE materials in engineering design. While maintaining or controlling the model

accuracy by determining the optimal number of added states, the LTISS representation gives

the LVE behavior in time-domain without directly computing the costly convolution integral

term. Also, this advantage is not limited to LVE material models. LTISS could also be

implemented for a wider range of material models that have intrinsic hereditary effects, which

are expressed by a convolution integral term.

Possible applicability of the DFSM is also discussed. With dynamic systems that have
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expensive derivative functions, DFSM could be applied along with the LTISS system ap-

proximation. The integrated DFSM and LTISS system approximation utilize the Markov

characteristic of the approximated convolution integral term, and could provide a benefit to

specific types of design problems.

From the design perspective, none of the LTISS parameters, except for material function

parameters of a few models, can be directly designed. For example, manipulating material

function shape, manipulating matrix elements of the LTISS approximated model, or even

manipulating parameters of the material functions do not guarantee that the resultant material

characteristics are physically-realizable. Future study needs to address this issue for design

engineers to freely explore and utilize the largely untapped potential of rheologically-complex

materials in design of dynamic engineering systems.
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Chapter 6

Continuous Relaxation Spectra Description
for Design With Linear Viscoelasticity1,2,3

6.1 Summary

Designing with and of rheologically-complex materials introduces an added difficulty due

to its complex nature. These difficulties include (1) material system parameters that are

not independently controllable but correlated to each other, (2) computationally expensive

nature in the numerical analysis of material behaviors with hysteresis, and (3) non-trivial

design parameterizations for function-valued material characteristics, which depend on a

timescale (linear viscoelasticity), an amplitude (nonlinear material behavior) or often both

(nonlinear viscoelasticity). This study focuses on material descriptions and representations

that are conveniently used for engineering design, especially for linear viscoelastic (LVE)

materials, which involve function-valued material properties that can depend on a timescale.

Engineering system design with LVE materials requires a material description with param-

eters that are simple and uniquely represent material characteristics. Here, a mathematical

framework for the continuous relaxation spectra representation is introduced. The continuous

relaxation spectrum H (τ) is demonstrated to be a design-appropriate and independently-

controllable material representation for linear viscoelasticity. Using continuous relaxation

1Part of the content reported in this chapter is reprinted by permission from ASME (Lee, Corman, Ewoldt,
and Allison. A multiobjective adaptive surrogate modeling-based optimization framework using efficient
sampling strategies. In Proc. ASME IDETC/CIE, DETC2017-67541, Cleveland, OH), ©2017.

2Part of the content reported in this chapter is presented in (Lee, Corman, Ewoldt, and Allison. Continuous
relaxation spectra and its reduced-dimensionality descriptions for engineering design with linear viscoelasticity.
In ASME IMECE, IMECE2019-13370, Salt Lake City, UT),©2019 by the authors.

3Mr. Yong Hoon Lee focused on numerical modeling of material models, mathematical conversion between
design representations, and design optimization aspects, while Dr. Rebecca E. Corman focused on developing
material descriptions and representations.

137



spectra in design offers the benefit of intrinsically limiting material design candidates to

physically meaningful options. Next, we use a reduced-dimensionality description of the

continuous relaxation spectra representation based on the integral moments. This representa-

tion helps designers interpret material design results, providing valuable information for the

material selection problem.

To demonstrate how these concepts can be used in engineering system design, we solve

simple test cases of design optimization problems using the continuous relaxation spectra

representation and the quarter car suspension design problem. Also, we analyze the design

results using the reduced-dimensionality material description. The design-appropriate material

description and the reduced-dimensionality LVE material interpretation supports enhanced

intuition for designing with LVE materials, which has an advantage on drawing physical

interpretations from the results and may help expand the appropriate use of these materials

in engineering design.

6.2 Introduction

Designing materials (and possibly the synthesis of new materials as a result of the design)

opens an avenue to unprecedented design innovations. Rheologically-complex materials,

including soft solids and viscoelastic (VE) fluids, offer a material behavior beyond the

capabilities of simple hard materials and Newtonian fluids widely used in general engineering

systems design. However, we see that designing with these complex materials has various

associated challenges, mainly because the material properties are functions of other quantities

rather than constants (e.g., time-dependent, frequency-dependent, and shear-rate-dependent

properties). The potential benefit of using linear or nonlinear viscoelasticity in various

engineered systems has been widely demonstrated [127, 155–158]. However, due to the

difficulties described above, many design activities with these complex materials still rely on

empirical observations and intuition rather than on rigorous processes of obtaining tailored
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optimal material designs.

Previous work performed by Corman et al. [12] has demonstrated a framework for

incorporating linear viscoelastic (LVE) materials in early-stage engineering design. This

work focused on a discrete Prony-series VE model (generalized Maxwell model) for designing

vibration damping and isolating systems with linear viscoelasticity. Here, we extend our

design representation of linear viscoelasticity with the stress relaxation spectrum, which

imposes material formulation constraints that implicitly ensure more realistic and achievable

material rheology targets, focusing the search on physically-realizable materials design targets.

In this study, we explain the characteristics of a material description enhances its value

for design studies. Using these necessary characteristics, we present a design-appropriate

material description, the continuous stress relaxation spectrum, for linear viscoelasticity.

Using the multiobjective adaptive surrogate model-based optimization (MO-ASMO) algorithm

presented in Chapter 4 and in Lee et al. [67], we solve a multiobjective optimization test

problem involving the design of a quarter car suspension with a viscoelastic damper (VED)

element, previously formulated as a benchmark problem of the MO-ASMO algorithm, but

with the continuous stress relaxation spectra design representation. We also explain how

these function-valued material properties could be characterized by simple and intuitive

parameters. We use a reduced-dimensionality description for the LVE materials [132, 159].

Design solutions of LVE materials are plotted in an Ashby-style cross-property plot in this

reduced-dimensionality framework, aiding interpretation and communication of the optimal

materials design results in an intuitive and informative visualization.

6.3 Methods

6.3.1 Design-Appropriate Material Descriptions

Rheologically-complex materials can be described with various function-valued characteristic

properties (denoted hereafter as a material function), which describe the material behaviors or
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Figure 6.1: All LVE material functions are related to each other in the limit of LVE regime.
The figure is adapted from Corman [159] and Ferry [160] and presented with modifications.

responses to the external input. Some quantities can be experimentally measured, and others

can be derived from quantities measured from experiments. Material constitutive models

describe how these material functions interact with the mechanical governing equations of

materials or systems. For example, with simple linear elastic materials, Young’s modulus

is a constant-valued material property that can be used to describe the material’s intrinsic

characteristics. Hooke’s law describes the connection between Young’s modulus of the material

and the stress-strain response. However, for the complex materials, this relationship is not

obvious as Hooke’s law or Navier-Stokes equation we see in simple elastic solids or Newtonian

fluids. For incompressible LVE materials, various equivalent representations exist, including

stress relaxation modulus G(τ), creep compliance J(τ), complex modulus G′, G′′(ω), and
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others (see Fig. 6.1) which are inter-related, and that convey all necessary information to

describe the material behavior. Note, however, these representations are not equal and not

all appropriate for use in design.

Corman et al. [12] outlined key criteria for parameters that are appropriate for designing

materials. These key criteria are summarized as (1) the material properties used in design

should be independently controllable; (2) the material properties should lead to mathemat-

ically tractable equations to model the motion response of the system; (3) the material

properties should connect to physical microstructural mechanisms and information for use in

the later stage of design.

First, material properties that are not independently controllable are not favorable for

use as design variables. For example, the dynamic moduli G′ and G′′ are mathematically

related to each other through Kramers-Kroenig relation [112], given as:

G′ (ω) =
2ω2

π

∫ ∞
0

G′′ (s) /s

ω2 − s2
ds; G′′ (ω) =

2ω

π

∫ ∞
0

G′ (s)

s2 − ω2
ds, (6.1)

and cannot be independently designed. While the Kramers-Kroenig relation can be imposed

as a nonlinear constraint for the design problem, this introduces an additional expensive

design constraint that needs to be satisfied in addition to the already-expensive materials

design problems. Although constraining Kramer-Kroenig relation is not a preferred method

of designing systems with viscoelasticity, readers are referred to Booij and Thoone [161]

for the approximations of transforms between VE quantities, including Kramers-Kroenig

transform.

Second, the material function needs to be tractable with the responses of the system

of interest. For example, problems with force, stress, or pressure-driven systems, the creep

compliance J(τ) or the retardation spectrum L(τ) can be natural choices for describing

the system governing equations. On the other hand, the deformation, deflection, or strain-

driven systems, the relaxation modulus G(τ) or the relaxation spectrum H(τ) can be better
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choices, since these material functions lead to a simple, integral form of the system governing

equations.

Third, the design-appropriate material function needs to connect its parametric quantities

to the material architecture, microstructure mechanisms, and their information; thus, these

quantities obtained by design processes can also be utilized for realizing the actual material

in the later stage of design. For example, the area under a section of the stress relaxation

spectrum H(τ) with respect to the ln (τ) represents the intrinsic material rigidity associated

with the relaxation time within the rage of timescale τ . The peak of the relaxation spectrum

also corresponds to the concentrated relaxation timescale of the material. With these

perspectives, the stress relaxation spectrum H(τ) is a design-appropriate material description.

Combining the three key criteria discussed above, a few material functions, including the

stress relaxation modulus G(τ) and the stress relaxation spectrum H(τ) are both acceptable

material descriptions for early-stage LVE design with displacement, deformation, or strain-

controlled loading scenarios. Specifically, the spectrum H(τ) has advantages over the stress

relaxation modulus G(τ), including the ability to provide information for the later design-

stage material and the intrinsically constraining materials to physically-realizable options,

we focus on the relaxation spectra design representation further in this study.

6.3.2 Relaxation Spectrum Representation

The relaxation modulus G(τ) is one of the most general and popular representations for

describing a material’s intrinsic stress relaxation characteristic in the time domain. In the

spectrum domain, the material function represents multiple stress relaxation characteristics

with a finite or an infinite range of timescale spectrum. The conversion between the stress

relaxation modulus and spectrum can be given with the definition of commonly-used relaxation

spectrum, given as:

G(t) =

∫ ∞
0

H(τ)

τ
e−t/τdτ =

∫ ∞
0

H (τ) e−t/τd ln τ, (6.2)
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Table 6.1: Select list of continuous spectra model parameterizations, taken from Tschoegl
[128], Martinetti et al. [129], Wiechert [130], Martinetti [162], Stankiewicz [163], Baumgaertel
et al. [164], Baumgaertel and Winter [131], Winter [165], Winter and Chambon [166]. Shapes
are shown in Fig. 6.2. Refer to Corman [159, p. 94] for extensive list of continuous relaxation
spectrum models.

Form np Refs.

Log-Normal
Basis

H(τ) = Hmax exp[−1
2

ln τ
τmaxσ

] 3 [128–130]

Fractional
Maxwell

H(τ) = GFM

π
τ−α sin(πα)+τβ−α sin(πβ)

1+2τβ−α cos(π(β−α))+τ2(β−α)
3 [162, 163]

BSW H(τ) =

{
neG

0
N [( τ

λc
)−ng + ( τ

λmax
)ne ] if τ ≤ λmax

0 if τ > λmax
5 [164]

Modified
BSW

H(τ) =
[
Hg(

τ
λc

)−ng + neG
0
N( τ

λmax
)ne
]

exp[−( τ
λmax

)β] 6 [131]

where Hg = neG
0
N(λ1

λc
)ng( λ1

λmax
)ne , λc < λ1 < λmax

Asymmetric
Lorentz

H(τ) = Hmax
r+r′

r′(tmax/t)ρr+r(t/tmax)ρr′

where r = (n/n′)1/(1+n/n′), r′ = (n′/n)1/(1+n′/n)
5 [128]

Critical
Gel

H(τ) = s
Γ(n)

τ−n, λ0 < τ <∞ 2 [165, 166]

where d ln τ is particularly convenient for interpreting the relaxation spectrum plotted on the

log scale of τ . The relaxation spectrum can be either discrete or continuous. An example

of converting the spectrum to the modulus is given in Fig. 6.3. A discrete spectrum can be

described as a sum of multiple points in the viscosity-weighted spectrum domain, given as:

Ĥ(τ) =
N∑
i=1

ηi · (τ − τi), (6.3)

but this representation is equivalent to the M -mode Maxwell model, already explained

in Section 4.4.2 of Chapter 4. Here, ηi is the viscosity magnitude, which is equivalent to

τiGi for i-th mode of Maxwell model parameters (Gi and τi). When the number of modes

becomes infinite, the discrete relaxation spectrum becomes the viscosity-weighted continuous
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Figure 6.2: A selection of commonly used continuous spectra models (as given in Table 6.1).
By using the continuous spectra representation, a whole variety of relaxation spectra can
be modeled with a small number of parameters (ranging from 2 to 6 for models listed in
Table 6.1).

relaxation spectrum, given as:

H(τ) = lim
N→∞

N∑
i=1

ηi · δ(τ − τi). (6.4)

The shape of the continuous relaxation spectrum could theoretically be an arbitrary uncon-

strained continuous function. However, to limit our design space to practically realizable

materials, we follow the common practice that uses certain parameterizations to represent

typical behaviors of real materials [128–131, 162, 163, 167]. Examples of spectra parame-

terizations with their references are listed in Table 6.1. Also, select function shapes of the

continuous relaxation spectra are shown in Fig. 6.2.
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Figure 6.3: An arbitrary continuous relaxation spectrum function in log-normal distribution is
converted to the corresponding relaxation modulus. See Eq. 6.2 for computing the relaxation
modulus from the relaxation spectrum function.

6.3.3 Conversion Between Spectrum and Modulus

Conversion from the relaxation modulus to the relaxation spectrum is a mathematically

ill-posed problem, while the opposite is straightforward [128, 168]. A small difference (error)

in the relaxation modulus G(τ) results in a large difference or a deviation in the relaxation

spectrum H(τ). It is natural to design with a material system with the relaxation spectrum

material function or parameters, and convert the spectrum to the relaxation modulus if

needed (e.g., in case the simulation demands the modulus function). However, designing

with the relaxation modulus will create an added difficulty when the relaxation spectrum

function or parameters need to be obtained. In addition to the perspectives described in the

earlier section, the continuous relaxation spectra design representation is also favorable as a

design-appropriate materials representation, because the conversion is only convenient in one

way, i.e., converting from the spectrum to the modulus.

There are a few approximation methods that exist to convert from the modulus to the

spectrum. First, several mathematical approximation formulations exist, including methods

proposed by Alfrey and Doty [169] and by Schwarzl and Staverman [168]. Alfrey and Doty
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[169] introduced an approximated conversion from the relaxation modulus function to the

relaxation spectrum function, given as:

H (τ) = − dG (t)

dt

∣∣∣∣
t=τ

, H (ln τ) = − dG (t)

d ln τ

∣∣∣∣
t=τ

. (6.5)

Schwarzl and Staverman [168] proposed utilization of direct inversion property of the Laplace

transform, and the form of the approximation can be obtained, of order k, given as:

H (τ) =
∑
k

(−1)k

(k − 1)!

dkG (t)

d (ln τ)k

∣∣∣∣∣
t=τ

. (6.6)

Second, an optimization algorithm can fit the relaxation spectrum function to approximate

the relaxation modulus function. Since the conversion from the spectrum to the modulus is

straightforward, the optimization algorithm can inversely fit the converted modulus from

the spectrum to the target modulus. This process can be represented with the following

optimization problem, given as:

minimize
H(τ)

∫ ∞
0

[
G̃ (t)−G (t)

]2

dt (6.7a)

subject to G̃ (t) =

∫ ∞
0

H (τ) e−t/τd ln τ. (6.7b)

Third, commercial software packages, such as TRIOS (TA Instrument), can aid computing

approximated H(τ) from experimentally-measured complex modulus G′ (ω) and G′′ (ω). In

addition to the methods presented here, there are other approximation methods that can

convert from the relaxation modulus to the relaxation spectrum, including the direct method

presented by Schapery [170].

Figure 6.4 shows an example of the conversion between the relaxation modulus and

the relaxation spectrum. First, a sample relaxation spectrum (denoted as the original H

in Fig. 6.4a) is generated, computed the corresponding relaxation modulus using Eq. (6.2)

(denoted as the original G in Fig. 6.4b). Using the computed G, several approximation
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(a) (b)

Figure 6.4: Various approximation methods for the relaxation spectrum using the relaxation
modulus function is presented and compared. (a) The approximated relaxation spectra
functions H (τ) are presented and compared to the reference spectrum denoted as Original H.
(b) The approximated relaxation spectra functions are used to calculate the relaxation moduli
functions G (τ) to compare how accurate the approximations represent the conversion.

methods are tested, including the Alfrey approximation and Schwarzl approximations with an

order of 1 and 2, to obtain the relaxation spectra H in Fig. 6.4a. These approximated spectra

are again tested with Eq. (6.2) to obtain the corresponding relaxation modulus G. These

relaxation moduli G obtained from the approximated H are plotted in Fig. 6.4b to compare

to the original G obtained with the reference H. All of the approximation methods show some

deviations in the lower timescale spectra. When converted back to the relaxation modulus,

these lower timescale deviations affect the lower timescale stiffness of the VE materials.

However, the least squares approximation predicted the spectrum with a small error. The

plot overlaps well, especially in the spectrum range where the viscous effect is significant

(around τ ∼ 100). The computed response of the modulus G from the approximated H also

fits well with the original G. However, due to the ill-posedness of the underlying mathematical

problem, the least squares minimization algorithm is computationally expensive, rendering

this conversion unfavorable for use with design optimization.
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6.4 Reduced-Dimensionality Material Description

Corman and Ewoldt [132] introduced a reduced-dimensionality design representation that

can present results of the VE materials design in a concise way, which can be presented in an

Ashby-like cross-property plot. This reduced-dimensionality description of the VE materials

is calculated directly from the integral moments of the continuous spectrum [127, 128]. The

zeroth, the first, and the second-order integral moments are defined as:

M0 =

∫ ∞
0

H (τ)

τ
dτ = G0, (6.8a)

M1 =

∫ ∞
0

H (τ) dτ = η0, (6.8b)

M2 =

∫ ∞
0

H (τ) τdτ = J0η
2
0, (6.8c)

where G0 is the plateau modulus, η0 is the steady-state viscosity, and J0 is the steady-state

compliance. From these integral moments, additional low-dimensional descriptions of the

characteristic relaxation times of the material can be calculated as:

τ1 =
M1

M0

=
η0

G0

= τn (6.9a)

τ2 =
M2

M1

= J0η0 = τω, (6.9b)

where τ1 = τn is the mean relaxation time of the viscosity-weighted spectrum H (τ) and

τ2 = τω is the mean relaxation time the modulus-weighted spectrum Q (τ) [127–129].

Here, the reduced-dimensionality descriptions of VE materials with calculated constants

G0, η0, τ1, and τ2 can conveniently present key characteristics of the material relaxation

behavior in a cross-property plot in an informative way, which is similar to those presented

by Ashby [10, 171]. To include additional information that represents the spread of the VE

relaxation times, both τ1 and τ2 needs to be represented on the plot, which is plotted as a

line connecting two timescale points with a horizontal line. This difference in two different
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timescales in the logarithmic plot is directly related to the polydispersity index (PDI), given

as:

log (PDI) = log (τ2)− log (τ1) = log

(
τ2

τ1

)
. (6.10)

Details of this reduced-dimensionality description are described in Corman [159] and Lee

et al. [121]. The usage of this representation in the test problem can be found in Section 6.7.

6.5 Viscoelastic Material Functions

In this study, we use a few simple discrete and continuous relaxation spectra representation

examples H(τ) using the (1) multimode Maxwell model, (2) Log-normal based continuous

spectrum model, and the (3) modified Baumgaertel-Schausberger-Winter (BSW) continuous

spectrum model. The first (multimode Maxwell) model represents the discrete spectrum-

based VE representation, while the latter two (Log-normal and BSW) models represent the

continuous spectra representations. A special case with Nmode = 1 for the multimode Maxwell

model is distinctively called the single-mode Maxwell model, or Maxwell model, which can

be mechanically represented by a single linear spring and a linear dashpot connected in series.

This model has one primary relaxation time, defined as a ratio of the spring constant and

viscosity, τ0 = η0/G0. The relaxation mode has viscous magnitude η0 with units of [Pa s].

For the discrete spectrum models, many modes of strength ηi at each corresponding

relaxation time τi can be linearly superposed. This allows complete freedom of the placement

of material relaxation timescales and their respective relaxation strengths as material models

from the design perspective. While some work to independently control multiple material

timescales has been done [172], it is not clear how accurately many modes can be independently

designed within a material, from a molecular and microstructural perspective.

On the other hand, the continuous relaxation spectra models may represent more realistic

materials. Simply adding polydispersity about the prominent timescale to the Maxwell

model allows the relaxation spectra representation counts for a more realistic material
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representation. The polydispersity spreads the relaxation characteristics over a range of

timescales, making the material model follow the microstructural mechanisms that lead to the

relaxation behavior (e.g., molecular weight of a polymer solution, bond energies for transient

cross-links, droplet sizes for emulsions). This treatment, along with the log-normal function

form for the modulus-weighted spectrum Q (τ), given as:

Q(τ) =
1

τ
Hmax exp

[
−1

2

(
ln τ/τmax

σ

)2
]

(6.11)

naturally describes the relaxation behavior [128]. The viscosity-weighted equivalent is given

as:

H(τ) = Hmax exp

[
−1

2

(
ln τ/τmax

σ

)2
]
. (6.12)

The primary timescale is represented by τmax with a viscous strength of Hmax. The smearing

out of timescales around this value is given through the standard deviation, σ.

Many spectra models are proposed to impose molecular structures of the materials

[173, 174] beyond simple statistical distributed spectra models, which are derived with the

information of molecular geometry, length, and chain structures [175]. The BSW model

[164] is one of the successful molecular structure-based models that impose the relaxation

characteristics of long, linear, flexible molecules with uniform length [175].

The BSW model is a linear superposition of power laws of the glass transition and the

entanglement behavior, expressed for up to certain cut off (maximum) characteristic timescale

value, given as:

H(τ) =


neG

0
N [(

τ

λc
)−ng + (

τ

λmax

)ne ] if τ ≤ λmax

0 if τ > λmax

, (6.13)

where G0
N is the plateau modulus, ng and ne are the relaxation exponents in the glass transition

and entanglement regimes, respectively, λc is the characteristic timescale of crossover to the
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glass transition, and λmax is the longest relaxation time, where the longest relaxation time is

a function of the molecular weight Mw. The BSW model is valid for Mw �Mc, where Mc is

the critical molecular weight.

The BSW model is then modified by Baumgaertel and Winter [131] to account for a

broader range of polymers by adding an exponential cut off term at the longest relaxation

time, in place of the abrupt conditional cut off. This enhanced model is called a modified

BSW model, and is given as:

H (τ) =

[
Hg

(
τ

λc

)−ng
+ neG

0
N

(
τ

λmax

)ne]
exp

[
−
(

τ

λmax

)β]
(6.14)

for Mw � Mc, where Mc is the critical molecular weight. Since the material function is

continuous and differentiable for the entire range, the modified BSW model is more favorable

for design, in addition to the model capability that handles the glass transition and the

entanglement of long molecules, which is identical to the BSW model. Thus, we include the

modified BSW model as one of our design target models for the test case presented in this

chapter.

6.6 Design Problem With Linear Viscoelasticity

The quarter car suspension design problem with a VED formulated in Section 4.4.2 of

Chapter 4 was expanded with more general material function descriptions, including the

continuous relaxation spectra viscoelastic design representations. Figure 6.5a represents a

standard quarter car suspension model with linear springs and dashpots. Using the same

geometric architecture as the earlier problem with a VED, the linear dashpot between the

sprung mass (m1) and the unsprung mass (m2) is replaced by an LVE element. Using this

one-dimensional simple test problem, we can outline the mathematical framework necessary

for solving the viscoelastic design problem with a relaxation spectrum description and draw
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(a) (b)

Figure 6.5: The quarter car suspension model representing dynamic model of one-fourth of
a car suspension design. Springs and dampers are used to control vibration transmission
from the road profile z (t) to the mass m1. (a) Linear dashpot (viscous damper) is used for
damping the quarter car suspension. (b) Viscoelastic element represented by continuous
relaxation spectrum function H̃ is used in place of a linear viscous damper.

physical interpretations from the result to extract design knowledge that can be potentially

extended to other design problems with viscoelasticity.

The VE element that uses a force connection (denoted as ‘VE’ in Fig. 6.5b) replaces

the mechanical damper of the standard linear vehicle model. A detailed derivation of the

VE force elements with a one-dimensional Maxwell model is described in Section 4.4.2 of

Chapter 4. The time-dependent force through a one-dimensional VE element, FV E, is given

in Eq. (4.15). Here, we are extending the stress relaxation modulus G (τ) used in the previous

chapter with the continuous relaxation spectra H (τ). Substituting Eq. (6.2) into Eq. (4.15)

yields:

F =

∫ ∞
0

[∫ ∞
0

H̃ (τ) exp
(
−s
τ

)
d (ln τ)

]
Ẋ (t− s) ds, (6.15)

where H̃(τ) = (αF/αX)H(τ), αF is a geometric mapping parameter between force and stress

(F = αF ς), αX is a geometric mapping parameter between displacement and shear strain

(X = αXγ), ς is the shear stress, and γ is the shear strain. The geometric parameters are used

to formulate front factors in the governing equations to connect macroscopic system-level

behaviors (e.g., force, displacement) to continuum-level behaviors (e.g., stress, strain). Details

are explained in Corman [159].
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Figure 6.6: Sample input road profile used for designing the quarter car suspension. (a)
Sample road profile from Allison [110], that is used to simulate road conditions for the quarter
car suspension model. The vehicle model is simulated at a constant speed of 10 [m/s]. (b)
The power spectrum calculated from the road profile with a vehicle speed of 10 [m/s] shows
a dominant frequency at 1.2 Hz.

The dynamics of the quarter car suspension problem is also given as a matrix form of the

state-space model in Eqs. (4.17)-(4.19) in Section 4.4.2 of Chapter 4. However, the matrix C

in Eq. (4.18) contains expensive VE force elements, so the equation needs to be solved using

a time-marching method. The objective functions are also described in Eqs. (4.13)-(4.14).

The objective functions have the integral form of the squared quantities. The first objective

function is a comfort metric, which integrates the squared quantity of the acceleration of

the sprung mass. The second objective function is a handling metric, which integrates the

squared difference between sprung mass displacement and road displacement. This metric

tracks how much tire deflection has occurred in the entire road profile, which can be a proxy

metric that represents how well the unsprung mass follows the road profile [115].

The model is subject to the following road profile adapted from Allison [110]. We used a

single vehicle operating condition with velocity values of 10 [m/s] for simplicity (equivalent

to 36 [kph] or 22.4 [mph]). The power spectrum presented in Fig. 6.6b illustrates that the

road profile has a single dominant frequency for the given velocity value of the vehicle, which

is 1.2 [Hz].
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6.7 Results

The same design problem was solved with different VE material functions in the same form

of the relaxation spectra formulation. Maxwell models are used in the design problem in the

form of a discrete relaxation spectrum with one, two, and four modes. The log-normal and

the BSW models are also used in the form of the same relaxation spectra formulation, but

with continuous spectra.

The Pareto-optimal solutions, along with the evaluated points, are shown in Fig. 6.7

with linear (Figs. 6.7a and 6.7c) and log (Figs. 6.7b and 6.7d) scale plots. Figures 6.7a and

6.7b show views of the entire Pareto frontier, including achievable designs in the objective

function space. Figures 6.7c and 6.7d show views of the magnified region near the anchor

point that has the best values for the comfort metric. In the region near the compromise

solution (a solution on the Pareto frontier that is closest to the utopia point), solutions

obtained with different design representations are equivalent within a small tolerance. From

this observation, all models we used in this study are representing a very similar design space,

at least in the regions that optimal solutions are located. Also, we observed that there is no

notable improvement by adding additional modes for the Maxwell model.

Among different design representations of the VE material functions, the BSW model

exhibits difficulties in obtaining a set of smooth solutions in the region where the first

objective function is minimized (obtained by giving up performance for the second objective

function). Possible reasons might be due to either (1) higher design space dimension, (2) the

optimization not fully converged to the true Pareto-optimal solutions, or (3) a restrictive

design representation complicating an exploration of possible design candidates. However,

considering that the BSW model provides rich information regarding molecular microstructure

mechanisms for target material design, a choice of material function model needs to balance

between numerical difficulties in design optimization and utility in the material realization

stage.
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(a) (b)

(c) (d)

Figure 6.7: The objective function space for the quarter car suspension design problem with
VED. The Pareto set (nondominated solutions) are shown as vivid color lines, while the
dominated points evaluated during the design optimization process are shown as blurred, but
matching, color dots. Each color represents a single material design, described by a different
relaxation spectrum model. Additional modes do not improve system level performance. (a)
Plotted in a linear scale plot. (b) Plotted in a log scale plot. (c) Magnified plot in a linear
scale. (d) Magnified plot in a log scale.

Figure 6.8 shows the Pareto-optimal designs obtained from the multiobjective optimization

performed with the multimode Maxwell model. Plot scales for different modes are equal,

so the subplots except (b) can be directly compared with the locations of the markers.

Characteristic VE relaxation modes are mainly located in the area where the relaxation

timescale λi is at 10−3 [s] and the relaxation modulus Gi is within the range from 104 to
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Figure 6.8: Optimal design results in the design space for the quarter car suspension with
the multimode Maxwell models. Although the dimension of the design space for different
numbers of modes differ, the number of variables for each mode are the same. Thus, the
multimode Maxwell model can be visualized in a two-dimensional space, and the intensity of
the gray scale represents the plateau relaxation modulus (Ge). (a) Design results using the
single-mode Maxwell model. (b) Magnified view of the single-mode Maxwell model results.
(c) Design results using the 2-mode Maxwell model. (d) Design results using the 4-mode
Maxwell model.

106 [Pa]. The models with two and four modes do result in minor VE relaxation modes,

but the values of these minor moduli are orders of magnitude less than the major moduli.

However, as we see in Fig. 6.8d, the optimal designs mostly have a similar trend that the

first mode is located within G1 ∼ O (105) and λ1 ∼ O (10−3), the mid-range modes are
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(a) (b)

Figure 6.9: Optimal design results in design space for the quarter car suspension with the log-
normal and the BSW models. Both models have more than three design variables, which make
it difficult to visualize the design candidates in an intuitive way. (a) Design results using the
log-normal distribution model. (b) Design results using the BSW model with variable ranges:
213.8 ≤ Ge ≤ 1914.6[Pa], 0.289 ≤ log (GN0) ≤ 8.78, 0.363 ≤ ne ≤ 4.757, 0.361 ≤ ng ≤ 3.815,
−8.130 ≤ log (λc) ≤ 3.158, −4.439 ≤ log (λmax) ≤ 10.000, −5.948 ≤ log (λ1) ≤ 5.309, and
−1.925 ≤ log (β) ≤ 0.946.

located within G2,3 ∼ O (100) and λ2,3 ∼ O (10−7 − 103), and the last mode is located within

G4 ∼ O (10−2 − 10−7) and λ4 ∼ O (102 − 106). This means that the problem’s dynamic

characteristics derives the most benefit from the first mode at around a timescale of 10−3 [s],

while small supplementary damping at a wide range of timescales is also helpful to improve

the system objectives. As a summary, it is clear that a single relaxation mode may be

enough to achieve optimal system performance for this problem. However, in many cases,

having single relaxation mode is unlikely achievable with real material systems. More likely,

a material will exhibit some dispersity in relaxation time, which might be represented better

with continuous relaxation spectra models, such as the log-normal or the BSW models.

Unlike multimode Maxwell models presented above, there exist some difficulties visualizing

material functions with many parameters. Figure 6.9 shows the Pareto-optimal solutions

obtained from the quarter car suspension design problem, with the log-normal distribution

model (Fig. 6.9a) and the BSW model (Fig. 6.9b). The log-normal distribution model involves
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four design variables, including the plateau modulus (Ge), and BSW model involves eight

design variables, with the plateau modulus and the cut off timescale β. Due to its high

dimensionality, location of a design point in the design space hypercube requires visualization

methods other than a Cartesian plot, such as a scatter plot with size and color markers for

up to five dimensions, as shown in Fig. 6.9a, or parallel coordinates, as shown in Fig. 6.9b.

We still see trends in these models as well. However, a preferred visualization of material

design should represent the characteristics of the material design solution, rather than just

showing optimal parameter values.

Figure 6.10 shows the Ashby-style reduced-dimensionality representation of the VE

material proposed by Corman and Ewoldt [132]. This design representation transforms

the continuous relaxation spectrum back into discrete data, which can be considered as a

simplified version of the relaxation spectrum. Thus, this lower dimensionality representation

cannot be restored to give full material information as is present with higher dimensionality

continuous relaxation spectra representations. However, this plot conveys important material

information that is critical to realize material design and synthesis. Also, this cross-property

plot gives the designer resources intuitively obtain necessary information from the design

solution to match the real material design.

Each plot shows the Pareto-optimal solutions obtained from the quarter car suspension

design problem with a VED with different material function models. Here, we compare the

results using the log-normal distribution (Fig. 6.10a), single-mode Maxwell model (Fig. 6.10b),

and multimode Maxwell models (Figs. 6.10c, and 6.10d). The dotted vertical line shows

the characteristic forcing frequency of the road profile used in the suspension dynamic

simulation. All Pareto-optimal solutions have lower relaxation time from the perspective

of the viscosity-weighted spectrum, which results in a small target Deborah number De for

optimal behavior (De< 1), allowing for a more viscous-like response of the VED element.

The VED designs with better comfort performance (points with darker color saturation) have

more fluid-like characteristics, while the designs with better handling performance (points
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Figure 6.10: Viscoelastic material functions are reduced to three characteristic quantities:
steady-state viscosity η0, mean relaxation time of the viscosity-weighted spectrum τ1, and
mean relaxation time of the modulus-weighted spectrum τ2, and are plotted in the Ashby-style
cross-property plot. (a) Material design solutions using the log-normal distribution model. (b)
Material design solutions using the single-mode Maxwell model. (c) Material design solutions
using the two-mode Maxwell model. (d) Material design solutions using the four-mode
Maxwell model.

with lighter color saturation) are closer to the characteristic forcing frequency, and have less

fluid-like characteristics. These results align with standard vehicle design principles that

harder suspensions perform better for handling with sacrifice in comfort.
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6.8 Conclusion

In this work, our previous design study [67] with LVE with discrete relaxation modes is

extended with continuous relaxation spectra design representations. The continuous relaxation

spectra framework better represents real material systems for viscoelastic relaxation behavior,

and provides various independently-controllable parameterizations that can connect with the

molecular microstructure or information of the materials. Using these parameterizations,

ranges of relaxation behavior can be captured and modeled without requiring a large number

of design variables. Thus, the continuous relaxation spectra representation can be useful for

material system design with viscoelasticity, as the model satisfies all three key criteria for

design-appropriate models outlined by Corman et al. [12].

Also, we demonstrated the use of the continuous relaxation spectra using a simple quarter

car suspension design problem with a VED element in place of a conventional linear dashpot.

Using this demonstration problem, we obtained Pareto-optimal solutions with different

material function models along with the continuous relaxation spectra representation. The

objectives of this multiobjective optimization problem (MOP) are (1) enhancing comfort by

minimizing sprung mass acceleration and (2) enhancing handling by minimizing the deviation

of unsprung mass from the road profile. The optimal material design solutions are compared

with the characteristic forcing frequency of the road profile and analyzed to interpret the

physical meanings of the design solutions.

Using an Ashby-style reduced-dimensionality viscoelastic material design representation

proposed by Corman and Ewoldt [132], the Pareto-optimal solutions are plotted in an

intuitive cross-property plot space, and this visualization can aid in communicating the

material information for design.

Most material models are designed for representing existing and synthesized materials

that are already or to be characterized. However, not many material models are ready for use

with materials design; we see many gaps in formulating design-appropriate material models.
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Future work needs to be conducted in various areas to extend this study, including, but not

limited to: (1) finding frameworks similar to the continuous relaxation spectra that can model

realistic material behaviors, such as normal stress differences, thixotropy, shear thinning, and

other nonlinear material responses; (2) how design methodologies can provide material design

constraints to ensure material realizability, even if these constraints are difficult to formulate;

and (3) handling and representing multiple spectrum peaks with the reduced-dimensionality

material design representation.
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Chapter 7

Simultaneous Design of Non-Newtonian
Lubricant and Surface Texture Using
Surrogate-Based Multiobjective
Optimization1

7.1 Summary

Surface textures decrease friction in lubricated sliding with Newtonian fluids. Viscoelastic

non-Newtonian lubricants can enhance frictional performance, but the optimal rheological

material properties and their coupling to the texture design are non-obvious. In this study, we

present a simultaneous design of both surface texture shape and non-Newtonian properties,

which can be achieved by fluid additives that introduce viscoelasticity, shear-thinning, and

normal stress differences. Two models with different fidelity and computational cost are

used to model laminar non-Newtonian fluid flow between a rotating flat plate and a textured

disk. At lower-fidelity, we use the Criminale-Ericksen-Filbey (CEF) constitutive model

and a thin-film approximation for the conservation of momentum (Reynolds equation). At

higher-fidelity, we use a fully nonlinear constitutive model typically applicable to polymer

solutions (multi-mode Giesekus model) and the full 3-D momentum equations. Fluid additive

design is parameterized by two relaxation modes, each having a timescale, added viscosity,

and a nonlinear anisotropic drag parameter. To manage the computational complexity and

constraints between design variables, we use our previously-developed multiobjective adaptive

surrogate model-based optimization (MO-ASMO) method. A data-driven implicit constraint

management technique, introduced in Chapter 4, is utilized to construct general boundaries to

1Reprinted by permission from Springer Nature Customer Service Centre GmbH: Springer Structural and
Multidisciplinary Optimization (Lee, Schuh, Ewoldt, and Allison. Simultaneous design of non-Newtonian
lubricant and surface texture using surrogate-based multiobjective optimization. Struct. Multidiscipl. Optim.
60(1):99-116), ©2019
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prevent attempts to evaluate designs that would lead to simulation failure. We demonstrate

the efficiency of our MO-ASMO method and provide insights into co-designing the lubricant

and textured surface. The Pareto-optimal solutions include fluid designs with both high and

low viscoelastic additive loading. We rationalize this trade-off and discuss how the optimal

design targets can be physically realized.

7.2 Introduction

Surface textures decrease friction in lubricated sliding contact with Newtonian fluids [15, 16,

18]. In hydrodynamic lubrication applications, surface texturing helps generate hydrodynamic

pressure to support loads [4, 36, 176], provide reservoirs for lubricant [15, 176–178], and trap

debris to help prevent surface wear and damage [179, 180]. We previously have shown that

this friction reduction can be enhanced further using more general surface topographies [4];

this recent work in freeform texture design was motivated by earlier studies that showed

favorable surface shapes could enhance frictional characteristics [20]. For the study presented

in [4], we developed surface parameterization techniques for generating an arbitrary texture

profile subject to local slope (manufacturability) constraints. We modeled the flow of an

incompressible Newtonian fluid over the textured surfaces using the Reynolds equation

[36, 42], and used this model to determine the optimal texture profile for minimizing frictional

loss (shear stress) and maximizing load capacity (normal force).

We have also studied friction reduction experimentally with surface textures and viscoelas-

tic non-Newtonian lubricants [35, 181]. Viscoelastic non-Newtonian lubricants can decrease

shear stress due to shear-thinning [182, 183] and increase the load capacity due to normal

stress differences [184]. Combing these additional fluid properties with surface texturing

results in greater friction reduction than when either strategy is used independently [35, 181].

However, optimization of these viscoelastic properties, or the combined optimization of both

fluid and surface texture, has not been considered previously.
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Based on these observations, we extend our design study to include viscoelastic non-New-

tonian fluid effects in friction reduction. A key challenge is a paradigm of how to “design” the

non-Newtonian fluid behavior. There is no single mathematical model to describe all possible

non-Newtonian fluids in the nonlinear viscoelastic regime [185], although universal equations

apply in some limited circumstances, such a very small deformation with linear viscoelastic

design [12]. Nonlinear viscoelastic design is of interest here, and we consider two different

constitutive models with different fidelities, though both are parameterized by the same fluid

design parameters. Selecting the fluid design description is also non-trivial. Here, we focus

on continuum-level descriptions that can be applicable to a range of possible fluid additives,

rather than material-specific parameters such as polymer molecular weight or colloid size,

which would depend on the specific material embodiment to achieve the desired rheology.

Our results here serve as targets that can be achieved by a wide range of material classes

(resulting in a rheological inverse problem [186]); however, we expect polymer solutions to be

the most likely formulation.

Table 7.1: Fluid models used for design in this study and corresponding solver governing
equations.

Case no. Fluid model Governing equation Dimension

1 CEF model Reynolds equation 2D (r, θ)
2 Giesekus model Cauchy momentum equation 3D (r, θ, z)
0 Newtonian fluid Cauchy momentum equation 3D (r, θ, z)

We include viscoelastic effects through two different models: the Criminale-Ericksen-

Filbey (CEF) model, and a multi-mode Giesekus model. The flow fields with both models are

three dimensional; however, the CEF model is less computationally expensive because it can

be used in the thin-film limit [187] to derive a modified Reynolds equation (which we have

done, see Appendix B and [188]) that includes viscoelastic effects, whereas the multi-mode

Giesekus model is used with the full 3-D Cauchy Momentum equations. Combinations of

the fluid models and governing equations are given in Table 7.1, and are discussed in more
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(a) (b)

Figure 7.1: A lubricated periodic surface texture design problem in a rotational tribo-
rheometer setting. (a) Example of simulated periodic sector design. (b) Example of full disk
design.

detail in Sections 7.3.1 and 7.4.1. We compare the results from the viscoelastic models

to the Newtonian fluid reference case for the following reasons: first, the simplest models

for including viscoelasticity are based on perturbations around the Newtonian fluid model

(ordered fluid expansion [112]), and second, we are interested in comparing the system

performance with viscoelasticity to the conventional Newtonian lubricants.

We have adapted our previous design optimization strategy [4, 36], which is illustrated

in Fig. 2.1 in Chapter 2 and Fig. 7.1, to design both surface texture topography and non-

Newtonian viscometric functions. Figures 2.1a (front view) and 2.1b (top view, a periodic

sector) show the setup used previously in experiments [35] and the numerical texture design

[4]. The fluid is confined between a flat plate that rotates at a constant angular velocity and

a stationary textured surface. A sector shown in Figs. 2.1b, 2.1d, and 7.1a is an example

design of the surface texture height profiles as a function of r and θ. Figure 7.1b shows an

example of a fully-textured disk using ten periodic sectors.

As we extend our study to include nonlinear viscoelastic models, and move from 2-D to

3-D, the computational cost associated with the design problem increases significantly. In our

previous study, where we modeled the fluid flow with the (Newtonian) Reynolds equation, the

computational cost of the optimization was reduced by using a coarse design mesh that was
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mapped onto a finer analysis mesh [4]. The computational cost of the optimization can also

be reduced by linearizing the Reynolds equation (with respect to the design variables) and

iteratively solving using a sequential linear programming (SLP) strategy [41] or by adaptively

constructing computationally-efficient surrogate models of expensive simulation responses

[82]. Here, we solve the full nonlinear optimization problem using surrogate modeling. We

have developed a multiobjective adaptive surrogate model-based optimization (MO-ASMO)

strategy [67] that uses efficient sampling techniques to explore constrained design space and

search for Pareto-optimal solutions. This algorithm is developed specifically for problems

with narrow or geometrically-complex feasible design domains. We have imposed a local slope

constraint on the gap height profile (manufacturability constraint), and have constrained

the viscoelastic material functions using the analytical solution of the Giesekus model in

steady, simple shear flow to represent realizable materials using a limited number of fluid

parameters. It is demonstrated that the MO-ASMO algorithm is beneficial by reducing the

overall computational cost of the combined fluid and texture design optimization problem.

Our contributions in this study are summarized here.

� We demonstrate that simultaneous co-design of texture (structural shape) and rheology

(material properties) achieves better frictional system performance than design employing

only texture shape optimization (as done previously). Our design is uniquely achieved by

parameterizing the target viscometric functions, such as viscosity and first normal stress

difference.

� We propose two unique non-Newtonian fluid solvers specifically for design applications

involving surface texture shape design. We first suggest modeling the viscoelastic behavior

with the CEF model, and use this constitutive relationship to derive a modified form of the

Reynolds equation (CEF-Reynolds equation), which includes leading order viscoelasticity and

inertia, in cylindrical coordinates. The solution of the CEF-Reynolds equation is obtained

in nearly the same amount of time as the traditional Reynolds equation, but the solution

also includes leading order viscoelastic and inertial effects that the Reynolds equation does
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not. The fidelity of the model can be improved by using the full 3-D Cauchy momentum

equations in cylindrical coordinates, which we also use here, where the additional polymeric

shear stress is included by a multi-mode Giesekus model. This representation also includes

time-dependent fluid behavior (for example, relaxation) that is not included in the CEF-

Reynolds equation. While this model increases design fidelity, it comes at the cost of longer

simulation time. Both of these models are discretized using the pseudospectral method, which

has many advantages over other discretization techniques for simulation-based optimization,

as explained in Section 7.4.1.

� The design representation allows for determining physically realizable material functions,

independent of the material formulation. The CEF model is material-independent, and the

model parameters are the shear rate dependent viscosity and normal stress differences, which

can be parameterized in any arbitrary way. Achieving these independent material properties

with real materials requires the use of material-specific constitutive models (such as the

Giesekus model, which applies for polymer solutions, polymer melts, worm-like micelles, etc.)

where the material properties are related through parameters that have physical meanings,

such as polymer relaxation time.

� Finally, we show that actively updated bounds that encapsulate the infeasible region

using the support vector domain description (SVDD) method make possible the avoidance

of design space regions that lead to numerical instabilities and simulation failure. SVDD

accommodates very general boundaries, and this strategy improves overall computational

efficiency.

This study is organized as follows. Section 7.3 presents the two non-Newtonian fluid

models and the design problem formulation. Section 7.4 introduces solution procedures for

fluid flow and surrogate-based design optimization. Section 7.5 presents the results and

discusses the impact of using different fluid models on the design problem results. Section 7.6

then summarizes the results and concludes with the main findings from this study.
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7.3 Formulation

We use models of two different fidelities, but both are governed by conservation of mass,

momentum, and a constitutive equation for the fluid stress τ . The different fidelities result

from different simplifying assumptions of these governing equations. Conservation of mass

(incompressible flow) and momentum are given by:

∇ · u = 0 (7.1a)

ρ

(
∂u

∂t
+ [u · ∇]u

)
= −∇p+∇ · τ , (7.1b)

where u is the velocity field, ρ is fluid density, p is the isotropic pressure, and τ is the material

stress. Fluid design parameters will appear in the material stress through the constitutive

model for τ .

We model this scenario at two different fidelities; one used the full 3-D conservation of

momentum for the flow field with a high fidelity nonlinear viscoelastic constitutive equation

for the stress tensor. The thin-film geometry and dynamic conditions motivate a lower-

fidelity model that neglects complexities in both the governing momentum equation and the

constitutive model. For this, we use a non-Newtonian fluid model that captures the nonlinear

rheological behavior but only weak viscoelasticity and simplify the governing equations based

on thin-film (lubrication approximation) concepts that neglect certain spacial derivatives

in Eq. (7.1b). The governing constitutive equations for τ , which involve the fluid design

parameters, are described in the following subsections.

7.3.1 Non-Newtonian Fluid Models

Non-Newtonian fluids show different rheological behavior than Newtonian fluids; the behaviors

most often studied are shear-thinning, viscoelasticity, generation of normal stresses in shear,

and extensional thickening. These rheological behaviors can be described using different
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constitutive models. The two models we use are the CEF model and the multi-mode Giesekus

model.

We select these two models because of their ability to predict shear-thinning, normal

stress generation, and viscoelasticity (more details given below). The higher-fidelity Giesekus

model is fully nonlinear and viscoelastic. It is derived in the context of polymeric systems

(often used for polymer solutions and polymer melts), and is parameterized by 3k parameters,

where k is the total number of relaxation modes. We limit ourselves here to k = 2 determined

by the Bayesian Information Criterion (BIC), an approximation of the full Bayes factors

[189]. Readers are referred to Appendix A.3 in Schuh [188] for the detailed procedure used

to determine the parameter k. The CEF model is lower fidelity but is universally applicable

to all non-Newtonian fluids in the limit of weak viscoelasticity. Thus, it can support a larger

design space for achieving a given fluid behavior. The inputs to the CEF model are functions,

which need to be parameterized; here, we choose to parameterize the rheological material

functions for the CEF model using the steady shear material behavior for the Giesekus model,

which allows us to have the proper interrelations between the viscosity and normal stress

differences. Thus, both models have the same fluid design parameters consisting of two

relaxation modes, each having a timescale, added viscosity, and a nonlinear anisotropic drag

parameter: (λk, ηk, αk).

Criminale-Ericksen-Filbey(CEF) Model

The CEF model [112, 190] is a constitutive model for the stress tensor τ that contains terms

for the shear-rate dependent viscosity and the first and second normal stress differences, and

is given as:

τ = η (γ̇) γ
(1)
− 1

2
Ψ1 (γ̇) γ

(2)
+ Ψ2 (γ̇)

(
γ

(1)
· γ

(1)

)
, (7.2)
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where the upper convected time derivative [191] of the shear rate γ̇ is defined as:

γ̇ = γ
(1)

= ∇u+ (∇u)T , and (7.3a)

γ
(n+1)

=
∂γ

(n)

∂t
+ (u · ∇) γ

(n)
−
(

(∇u)T · γ
(n)

+ γ
(n)
· (∇u)

)
. (7.3b)

The model parameters are the functions η (·), Ψ1 (·), and Ψ2 (·), which are equivalent to the

viscometric functions in simple shear. For general flow fields, these functions depend on the

instantaneous shear rate magnitude γ̇, where γ̇ =
√

1
2
γ̇ : γ̇ (the operator ‘:’ denotes the inner

product of tensors). The first term in Eq. (7.2) models a generalized Newtonian fluid, and

the remaining terms model the behavior of elastic effects from normal stress differences.

In steady, simple shear flow, where u = γ̇yî, the CEF model gives the shear viscosity

η, and the first and second normal stress difference coefficients Ψ1 and Ψ2 as η = η (γ̇),

Ψ1 = Ψ1 (γ̇), Ψ2 = Ψ2 (γ̇), meaning that the inputs to the CEF model are the steady shear

responses for a given fluid. It should be noted that for most polymeric systems, Ψ2 (γ̇) < 0.

In small amplitude oscillatory shear, where u = γ0ω cos (ωt) yî, γ0 is the strain amplitude,

and ω is the angular frequency, the CEF model gives the dynamic viscosity η′ and the storage

modulus G′ as:

η′ = η (γ̇ = 0) , (7.4a)

G′ =
1

2
Ψ1 (γ̇ = 0)ω2, (7.4b)

which is the same behavior as that predicted by the second-order fluid (SOF) model, which

gives the first-order deviation from Newtonian fluid behavior, and is the same terminal regime

(limit ω → 0) predicted by all fully nonlinear fluid models (including polymer systems) with

a finite longest relaxation time.

The design inputs for this model are the rheological material functions η (γ̇), Ψ1 (γ̇), and

Ψ2 (γ̇). There are infinitely many ways of representing the material functions; here, we choose
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to use the steady shear response from fully nonlinear models, which reduces the fluid design

representation to the design inputs λk, ηpk , and αk, which are related to the steady-state

behavior of η (γ̇), Ψ1 (γ̇), and Ψ2 (γ̇) for a multi-mode Giesekus model [112] as:

η = ηs +

nmode∑
k=1

ηpk
(1− fk)2

1 + (1− 2αk) fk
(7.5)

Ψ1 =

nmode∑
k=1

2ηpkλk
fk (1− αkfk)

(λkγ̇)2 αk (1− fk)
(7.6)

Ψ2 =

nmode∑
k=1

ηpkλk

( −fk
(λkγ̇)2

)
, (7.7)

where:

fk =
1− χk

1 + (1− 2αk)χk
(7.8a)

χ2
k =

√
1 + 16αk (1− αk) (λkγ̇)2 − 1

8αk(1− αk) (λkγ̇)2 . (7.8b)

We use this model because of the predicted normal stress generation which is important

in determining the thrust generation with polymer solutions. We limit the parameters

ηpk ∈
[
0, 5

2
ηs
]
, λk ∈ [10−5, 10−2], and αk ∈ [0.01, 0.5]. The bounds on ηpk are determined by

fitting the Huggins equation [192] to experimental data of zero shear viscosity as a function

of polymer concentration, and noting the region where the Huggins equation is valid when

compared to the experimental data. The bounds on λk are also determined from fitting the

Giesekus model to experimental data at varying concentrations of polyisobutylene (PIB)

[188], which are also within the range of concentrations tested here. The mobility factor αk

is bounded between 0.01 and 0.5 to ensure realistic material properties [193]. When αk is less

than 0.01, large Weissenberg numbers Wi = λγ̇ cause numerical instability, and numerical

computation tends to fail [194]. The total number of fluid design variables is 3k, where k is

the number of relaxation modes in the parameterization.
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Multi-Mode Giesekus Model

The CEF model only captures viscoelasticity in the limit of low frequency, close to steady-

state. To capture the higher-order viscoelastic effects, we must use a higher fidelity model

that captures the full range of a viscoelastic response. Here, we choose a multi-mode Giesekus

model to simulate our polymeric stresses [112], given as:

λk

(
∂τ

pk

∂t
+ (u · ∇) τ

pk
−
[
(∇u)T · τ

pk
+ τ

pk
· (∇u)

])

+τ
pk

+
λkαk
ηpk

(
τ
pk
· τ

pk

)
= ηpk γ̇, (7.9)

where λk is the relaxation time, ηpk is the polymeric viscosity, and αk is the mobility factor

of the kth-mode, which can be physically related to the anisotropic drag of a polymer when

deformed by the flow. Note that the entire first term in parentheses on the left-hand side is

an upper convected time derivative of the polymeric stress τ
pk

. The contributions from each

mode are assumed to be additive such that the total polymeric stress τ
p

is given as:

τ
p

=

nmode∑
k=1

τ
pk

. (7.10)

The steady shear viscosity and normal stress differences are the same as those given in

Eqs. (7.5)-(7.7). Here the linear (small amplitude) viscoelastic behavior [112] is given as:

η′ = ηs +

nmode∑
i=1

ηpk
1 + (λkω)2 (7.11a)

G′ =

nmode∑
i=1

ηpkλkω
2

1 + (λkω)2 , (7.11b)

which applies for all frequencies in the linear regime.

We again use this model because of the predicted normal stress generation, which is

important in determining the thrust generation with polymer solutions. We limit the
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parameter ranges to ηpk ∈
[
0, 5

2
ηs
]
, λk ∈ [10−5, 10−2], and αk ∈ [0.01, 0.5]. The total number

of design variables is 3k, where k is the number of relaxation modes in the parameterization.

Parameters

Fluid properties, model parameters, computational mesh resolutions, operating conditions,

and design constraint parameters for Cases 0, 1, and 2 in Table 7.1 are given in this section.

The top and bottom disks (gap-controlled rotating disk and a fixed textured surface in

Figs. 2.1a and 2.1d) have the same outer radius (ro) of 20 mm. The minimum controlled gap

height between the top and the bottom disks (h0) is 269 µm; this value is used as the lower

bound for the texture design gap height variable. The number of periodic sectors needed to

construct a full disk (Nφ) is 10. The number of mesh nodes for each r-, θ-, and z-direction

is nr = 6, nθ = 6, and nz = 4, respectively. Note that nz does not apply to Case 1. The

angular velocity of the flat plate (Ω), as shown in Fig. 2.1a, is 10 rad/s; solvent viscosity (ηs)

and density (ρs) values are 9.624× 10−3 Pa·s and 873.4 kg/m3. The number of modes for the

Giesekus fluid model is nmode = 2 for Cases 1 and 2. For Case 0, this variable is not defined.

The maximum angle for the texture inclination (θincl = 60◦) is explained in Section 7.3.2.

7.3.2 Design Problem Formulation

The design problem considered here is the simultaneous minimization of the input power to the

rotating flat plate and maximization of the load-supporting normal force, while constraining

the maximum texture inclination angle. This problem is formulated as a constrained nonlinear

optimization problem:

minimize
xlb≤x≤xub

f (x) = [P, −FN ]T (7.12a)

subject to g
1

(x) =

[∣∣∣∣hkj − h(k−1)j

rk − r(k−1)

∣∣∣∣ , ∣∣∣∣ hil − hi(l−1)

riθl − riθ(l−1)

∣∣∣∣]T − θincl ≤ 0 (7.12b)

g
2

(x) = −hnr1 + hnrl ≤ 0 (7.12c)
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h3 (x) = hi1 − hinθ = 0, (7.12d)

where P = MΩ (7.12e)

FN = Nφ

∫ ϕ/2

−ϕ/2

∫ Ro

Ri

(p|z=0 − τzz|z=0) rdrdθ (7.12f)

M = Nφ

∫ ϕ/2

−ϕ/2

∫ Ro

Ri

(rτθz|z=0) rdrdθ (7.12g)

pij, τ ij ← flow-solver (x) , (7.12h)

for all i = 1, · · · , nr, j = 1, · · · , nθ, k = 2, · · · , nr, and l = 2, · · · , nθ. The design objectives

are to minimize the power input P = MΩ and to maximize the normal force FN simultaneously.

Simultaneous optimization of the two objective functions (multiobjective optimization) results

in a set of Pareto-optimal (nondominated) solutions. A manufacturability constraint applied

in our previous study [4] is also implemented via the first vector-valued inequality constraint

function g
1
. The maximum allowable local inclination angle between neighboring control

points of the Lagrange polynomial interpolation over the texture geometry is limited to a

predefined constant vector θincl. In addition, it is possible to have an infinite number of

designs that are physically identical unless we set a reference point that is lower than any

other location with the same radius, since the spatial design domain is rotationally periodic.

To prevent this problem, we impose the inequality constraint g
2

(x). Also, the periodic

boundary condition in the spatial design domain is specified using the constraint h3 (x).

The design variable vector x is comprised of both surface height values at mesh nodes, hij ,

and fluid model parameters associated with each viscoelastic relaxation mode, k, given as

x = [hij, ηpk , λk, αk]
T for all i = 1, · · · , nr, j = 1, · · · , nθ, k = 1, · · · , nmode, and assuming

we have a given fluid viscosity η, used as η (γ̇1 ≈ 0) = η and ηs = η for the Giesekus model.

The texture design is represented by a curvilinear mesh fitted to the cylindrical coordinate

system and nodes spaced according to Gauss-Lobatto-Legendre (GLL) points [44] for each r

and θ-direction. Gap heights hij are defined for each node of the mesh, where i and j are
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indices of the nodes in r and θ-directions. The texture design defined by hij is interpolated

using Lagrange polynomials; the resulting texture surface used in this model is continuous and

smooth. The viscoelastic material functions for the CEF model are described using analytical

solutions of the material functions from the Giesekus model as described in Section 7.3.1. This

representation strategy reduces the number of design variables significantly, which allows the

same design variable set to be used for the two fluid constitutive models. Material functions

used in the non-Newtonian fluid models are constrained to disallow certain combinations

of values that are not numerically or physically realizable. This is implemented using the

SVDD technique [97]. The SVDD method is discussed in Section 7.4.2 and Appendix D.

Section 4.3.5 of Chapter 4 also describe this method with more information as an implicit

constraint generation and management technique.

7.4 Methodology

7.4.1 Solution Procedures for Fluid Flow

Lower-Fidelity Model: Thin-Film Reynolds Equation With CEF Fluid

Previously we have developed code for solving the flow of an incompressible Newtonian fluid

over general surface textures using the Reynolds equation [36], and have used that code for

optimization of textured surfaces [4]. A previous study [187] showed that viscoelasticity could

be included in the thin-film governing equations using the CEF model.

Here we derive a modified Reynolds equation with the CEF model for our design problem.

Full details are provided in Appendix B. Briefly, we apply the following assumptions: (1)

the gap height is small compared to the radius of the textured disk (h (r, θ) /R << 1), (2)

shear rate (γ̇ (r, θ) = rΩ/h (r, θ)) is independent of z, (3) ∃ no second normal stress difference

coefficient (Ψ2 = 0), resulting in pressure that does not vary in the z-direction (∂p/∂z = 0),

and (4) zero gradients in the z-direction are assumed for the other viscometric functions
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(∂η/∂z = 0, ∂Ψ1/∂z = 0). Splitting the pressure and velocity fields into p = p0 + p1 and

u = u0 + u1, and applying appropriate boundary conditions for the velocity fields results in

two equations governing the flow of a CEF fluid over general surface textures; an equation

similar to the steady-state Reynolds equation may be given as:

1

r

∂

∂r

(
rh3

12η

∂p0

∂r

)
+

1

r

∂

∂θ

(
h3

12ηr

∂p0

∂θ

)
=

1

r

∂

∂θ

(
rΩh

2

)
, (7.13)

which includes shear-thinning, and another equation (where the right-hand side depends on

the local Reynolds number and the local relationship between elasticity and viscosity), given

as:

1

r

∂

∂r

(
rh3

12η

∂p1

∂r

)
+

1

r

∂

∂θ

(
h3

12ηr

∂p1

∂θ

)
=

1

r

∂

∂r
(rGr) +

1

r

∂

∂θ
(Gθ) , (7.14)

where Gr and Gθ are functions of r, h, η, Ψ1, ∂p0
∂r

, and ∂p0
∂θ

. Detailed expressions for each term,

and the full derivation of the modified CEF-Reynolds equations are given in Appendix B

and in Schuh [188].

Higher-Fidelity Model: Full 3-D Momentum Equation With Giesekus Fluid

For the Giesekus model, the full Cauchy momentum equation is written in a tensorial form

as:

∂u

∂t
+ (u · ∇)u = −1

ρ
∇p+

ηs
ρ
∇2u+

1

ρ
∇ · τ

p
, (7.15)

where ρ is the fluid density, ηs is the solvent viscosity, and τ
p

is the polymeric contribution

to the shear stress. The contribution of the solvent has been pulled out of the stress tensor

to improve numerical stability [195]. We assume that the solvent and polymeric stresses add

to produce the total shear stress:

τ = τ
s

+ τ
p
, τ

s
= ηsγ̇. (7.16)

The governing equations (conservation of momentum and incompressibility) provide four
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equations with ten unknowns; therefore, a constitutive equation must be used for τ
p

to solve

the fluid flow system. As stated above, we are using the multi-mode Giesekus model given in

Eq. (7.9) with nmode = 2.

We solve the transient governing equations in cylindrical coordinates to steady-state. The

equations are solved on a periodic sector of a disk where z ∈ [−h(r, θ), 0]; this is similar to our

previous solution method with the Reynolds equation [4, 36]. The equations are discretized

in space using a Galerkin pseudospectral method. We have mapped our 3-D periodic sector

onto the [−1, 1] cube using an invertible mapping [196, 197], where it was assumed that the

gradient of the gap height profile h (r, θ) exists everywhere in the computational domain.

We use GLL quadrature with optimally-chosen mesh points and quadrature weights so that

the quadrature is exact for approximating polynomials of degree 2N − 1, where N + 1

is the number of discretization points in a given direction [43, 44]. We use a third-order

Adams Bashforth method with third-order extrapolation for the nonlinear terms in the time

discretization. A velocity splitting technique is used for solving the pressure Poisson equation

at each time step, and the diffusion terms are treated implicitly to aid stability [195].

Pseudospectral Method

We solve both governing equations presented in Section 7.4.1 and 7.4.1 using a Galerkin

pseudospectral method for a periodic sector with p0|r=R0
= p1|r=R0

= 0, ∂p0/∂r|r=Ri =

∂p1/∂r|r=Ri = 0, and periodic boundary conditions in the θ-direction. The Dirichlet boundary

condition p|r=R0
= 0 is used to match the results described in Macosko [51] for flow between

parallel disks. We use ND-th order Lagrange polynomials for approximating quantities

for each geometric dimension D. The texture design provided to the flow simulation is

represented by the gap height hij for i, j = 1, · · · , nr, and the solution procedure associated

with the pseudospectral method assumes that the entire computational domain is continuous

and smooth in Lagrange polynomial form. Thus, this method obtains a very accurate fluid

flow solution, even for coarse spatial meshes. Solutions for the design problem will also
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be smooth and continuous in the form of a Lagrange polynomial. Also, by maintaining

the same mesh for the design representation and the simulation domain representation, we

obtain very accurate design solutions without requiring a large number of design variables

due to the characteristics of the interpolating polynomials used in the pseudospectral method.

Increasing the mesh density, however, may introduce new practical design complexities, such

as thinner texture features on the surface.

Experimental Validation of Numerical Model

The lower-fidelity model (thin-film Reynolds equation with CEF fluid) and the higher-fidelity

model (full 3-D momentum equation with Giesekus fluid) are validated against steady shear

experiments for varying concentrations of PIB in S6 base mineral oil using a cone-and-plate

rheometer geometry of Θ=1.011◦ and R=20 mm, where Θ and R denote the cone angle

and the radius, respectively. The comparison results show a good agreement between two

models in a steady condition and between numerical and experimental results. The detailed

comparisons of the raw torque and the raw normal thrust between experimental data and

simulation results are provided in Section C.1 of Appendix C.

7.4.2 Design Procedures

Multiobjective Adaptive Surrogate Model-Based Optimization (MO-ASMO)

Efficient and effective sampling strategies for surrogate-based optimization (SBO) are well-

studied in the context of finding a single optimum by balancing exploration and exploitation

objectives in constructing surrogate models [82]. However, studies of sampling strategies for

multiobjective optimization problems (MOPs) are largely limited to a global-level improvement

of surrogate model accuracy as opposed to more efficient targeted accuracy improvements

[198, 199]. Shan and Wang [200] developed the Pareto set pursuing (PSP) methodology

that generates new training points toward regions where the predicted Pareto set is located,
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resulting in significant improvements in computational efficiency for the solution of MOPs

using SBO.

The MO-ASMO code developed by Lee et al. [67] and presented in Chapter 4 is used

here. The high-level process of the MO-ASMO framework is shown in Fig. 4.1 in Chapter 4.

This code is a surrogate-based optimization framework that can manage multiple objective

functions, tens or hundreds of design variables, and multiple linear and nonlinear constraints.

Readers are referred to Fig. 4.1 in Chapter 4 for a high-level process description for the direct

sampling-based [82] MO-ASMO algorithm. We have developed this method primarily for

solving problems with complicated constraints that result in narrow or otherwise difficult

to navigate feasible domains. It avoids infeasible samples to reduce the inefficient use of

high-fidelity simulations, especially designs that are not physically meaningful or that result

in numerical instability. The method aims to balance choosing samples that help improve

surrogate model accuracy in the vicinity of the Pareto-optimal solution (a hypersurface in

the design space), with choosing samples that aid exploration to improve the probability

of finding global optima. The problem considered here is well-matched for this MO-ASMO

method as it involves a large number of constraints that interrelate multiple design variables,

and a computationally-expensive simulation. Readers are referred to [67] for a detailed

description of this method, including sampling and validation, as well as openly-available

source code.

Feasibility Management Using Support Vector Domain Description (SVDD)

When using simulations that use design variables as inputs, it is possible that certain

combinations of design variable values correspond to a physically meaningless design that

results in simulation failure. Some combinations that are physically meaningful may also

result in numerical instabilities and simulation failure. In some cases, it may be possible to

prevent consideration of designs that cause simulation failure via explicit algebraic constraints

[67]. In other cases, it may not be known what variable combinations may cause failure
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until attempting simulation, preventing the definition of constraints a priori. In these

circumstances, an alternative strategy is required.

In the studies presented here, it is not possible to define constraints a priori that prevent

simulation failure. Certain numerical instabilities arise for a range of different designs. A

strategy was developed to define arbitrary constraint boundaries (non-convex, disconnected

infeasible domains) adaptively based on observed failed simulations. This strategy is based

on the SVDD [96, 97]. In earlier work, the SVDD was used to define complex feasible regions.

Here SVDD is used in the opposite manner to define regions of points that are infeasible in

the sense that they lead to simulation failure. The availability of these constraints helps to

avoid wasteful consideration of points that cannot be simulated.

At each MO-ASMO main iteration, the SVDD approximation of regions that cannot be

simulated is improved by adding newly discovered infeasible points to the SVDD dataset.

Using a strategy that defines the infeasible domain rather than the feasible domain avoids

excessive limitations on design space exploration, all without a priori knowledge of the regions

that cannot be simulated.

We constructed the Gaussian kernel-based SVDD [96] using a maximization problem

given as:

maximize
0≤β≤C

W
(
β
)

=
∑
i

βiKG (xi, xi)−
∑
i,j

βiβjKG

(
xi, xj

)
, (7.17)

where C is a vector of appropriate length where each element is the constant C. The Lagrange

multipliers β are bounded above by C. Varying C can help detect the outliers in the dataset

that describes the domain. KG (·, ·) is the Gaussian kernel function. After we construct the

domain using the SVDD, an arbitrary point z is inside the described boundary if:

R2 (x)−R2 (z) =

KG (x, x)−KG (z, z) + 2
∑
i

βi (KG (z, xi)−KG (xi, xi)) ≥ 0, (7.18)
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where x is a bounding point, which is called a support vector. A detailed explanation of

SVDD is provided in Appendix D.

7.5 Results and Discussion

7.5.1 Case 1: Lower-Fidelity Model With CEF Fluid

Solutions of design problem Case 7.5.1 (CEF model with Reynolds equation) are illustrated in

the objective function space in Fig. 7.2. Since the objective functions are (1) to minimize the

power input and (2) to maximize the normal force, we desire points in this space to be close

to the top-left corner. We used the Gaussian process surrogate modeling technique within

the MO-ASMO framework for all numerical optimization studies presented here. Among the

several stopping conditions available, we selected an average error criterion (less than 1%)

evaluated during the validation stage in the MO-ASMO for terminating the optimization

process. Optimal solutions (in the form of a Pareto frontier) are marked with colored circles,

whereas all other design points evaluated during the course of optimization are marked with

black and gray-scale dots. If a design point is displayed in a darker gray than another, this

indicates that the former dominates the latter. Points having the same gray-scale intensity

means they have the same rank according to a nondominated sorting strategy [46]. Optimal

solutions have a range of input power values from 4.31 × 10−4 to 3.56 × 10−3 [W], and a

range of normal force values from 6.16× 10−4 to 1.50× 10−1 [N]. The labels (a) through (f)

that identify specific marked points in Fig. 7.2 corresponds to the texture and fluid designs

given in Figs. 7.3a–7.3f and plot legends (a)–(f) of Figs. 7.4a and 7.4b. These representative

solutions (a) through (f) were chosen subjectively based on the following criteria: (1) they

should not be located in close proximity in the objective function space; (2) they should be

among the best solutions in the Pareto frontier, i.e., they should be a point closer to the

utopia point among solutions in close proximity; (3) and they should be evenly distributed in

the objective function space.
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Figure 7.2: Explored designs and optimal solutions (nondominated designs) for the CEF
model case displayed in the objective function space.

LB ≤ {var} ≤ UB : 0 ≤ ηpi ≤ (5/2)ηs , 1.0× 10−5 ≤ λi ≤ 1.0× 10−2 , 0.01 ≤ αi ≤ 0.5

(a) (b) (c) (d) (e) (f)

Figure 7.3: Sample textured sector and fluid designs in the Pareto set from the CEF model
case. f1 represents the first objective function (power input [W]) and f2 represents the second
objective function (normal force [N]).

Design result (a) for Case 7.5.1 (refer to design point (a) in Figs. 7.2, 7.3a, and Line (a)

in Fig. 7.4a) is an anchor point of the Pareto set; it has the minimum power value over all

feasible designs. An anchor point is a nondominated point with one of the objective functions

optimized, with all other objective functions ignored. Design point (a) results when power

is minimized and normal force is not considered. This minimum-power design exhibits a
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(a) (b)

Figure 7.4: Viscoelastic material functions of corresponding sample optimal designs from the
CEF model case. (a) shear viscosity, (b) first normal stress difference coefficient. Curves
(a)-(f) correspond to designs (a)-(f) in Figs. 7.2 and 7.3. Increased viscoelasticity (e.g. polymer
additive) appears from design (a) to (f)

relatively flat texture surface with a small amount of asymmetry, and does not generate much

normal force (4.31× 10−4 [N]). This design solution is Newtonian (e.g., no polymer additive)

and shows a flat shear viscosity in Line (a) of Fig. 7.4a, since the polymer viscosity values

have converged to zero for all modes. Necessarily, no first normal stress difference appears.

Design result (f) (refer to design point (f) in Figs. 7.2, 7.3f, and Line (f) in Figs. 7.4a and

7.4b) is the other anchor point, which has a maximum normal force without consideration

of power input. Unlike the former anchor point, this design has strong asymmetry with

distinct elevation changes in the texture to form a spiral blade-like shape. As explained in our

previous study, this spiral texture design directs the fluid pressure radially inward by acting

as a converging channel, eventually generating the positive net normal force due to increased

pressure near the disk center [4]. Also, this design solution includes non-Newtonian fluid

properties with high polymer viscosity values for both modes (ηp1 and ηp2). High polymer

viscosity lifted the plateau of the overall shear viscosity, as shown in Line (f) of Fig. 7.4a

and has the highest first normal stress difference values for the entire shear rate regime, as

shown in Line (f) of Fig. 7.4b. These results are congruent with earlier studies based on

Newtonian fluids where it was observed that: (1) a deeper surface reduces frictional loss, (2)
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symmetric surfaces do not generate any normal force due to geometric properties, and (3)

stronger asymmetry generates larger normal forces [4, 36].

Other designs on the Pareto frontier between these two anchor points (refer to design

points (b)–(e) in Figs. 7.2 and 7.3b–7.3e) have consistent trends. Specifically, we observe that:

(1) the general shape of the surface texture designs does not change significantly, but steeper

inclines in the texture are required to generate higher normal forces, and (2) an increased

polymer viscosity and a decreased nonlinearity (anisotropy described by the mobility factor)

help obtain higher normal forces.

These results show that the nonlinearity mainly plays a role when we optimize both

objective functions simultaneously. An increased polymer viscosity tends to help increase

load capacity, and increased nonlinearity helps reduce frictional losses. It should be noted

that these responses are non-monotonic and have optimum values for achieving a certain

balance between the two objectives.

To quantify the numerical solver uncertainty, solver parameter sensitivities were analyzed

at the six selected solution points identified as (a)–(f) in Fig. 7.2. The solver parameter

sensitivities are computed by obtaining deviations in the objective function values with

predictable deviation possibilities in parameters, such as radius of the rotating disk (Ro),

minimum controlled gap height between disks (hmin), angular velocity of rotating disk (Ω),

solvent viscosity (ηs), and solvent density (ρs), using the differential sensitivity analysis

method. Deviations in parameters Ro and ρs affect less than 1% in both objective functions.

Deviations in parameters Ω and ηs make changes between 1 to 3% in either or both objectives.

Thus, this numerical solver is reliable for these four parameters. However, a deviation in

hmin results in approximately 4% change in the first objective (power input) and about

11% change in the second objective (normal force). Thus, removing the offset in the gap

height between disks is very important specifically for maintaining accuracy in normal force

prediction. Detailed sensitivity analysis results are given in Table C.1 in Section C.2 of

Appendix C.
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Figure 7.5: Explored designs and optimal solutions (nondominated designs) for the multi-mode
Giesekus model case in the objective function space.

7.5.2 Case 2: Higher-Fidelity Model With Giesekus Fluid

Solutions of the design problem Case 2 (multi-mode Giesekus model with transient Cauchy

momentum equation) are illustrated in the objective function space in Fig. 7.5. As with the

CEF model (Fig. 7.2), the direction of the desired performance is toward the top-left corner,

and the labeling strategy is kept consistent. Optimal solutions have a range of power input

from 4.42×10−4 to 3.99×10−3 [W], and a normal force range of 1.11×10−3 to 1.29×10−1 [N].

The labels (a) through (f) indicate specific nondominated points in Fig. 7.5 that correspond

to the texture and fluid designs shown in Figs. 7.6a–7.6f and plot legends (a)–(f) of Figs. 7.7a

and 7.7b.

Design result (a) of Case 2 (refer to design point (a) in Figs. 7.5, 7.6a, and Line (a) in

Fig. 7.7a) is the anchor point with minimum power input. This design shows a relatively flat

texture surface with a small amount of asymmetry and Newtonian fluid properties, as was

observed in Case 1. The maximum normal force anchor point is the design point (f) in Fig.

7.5 (also in Fig. 7.6f and Line (f) in Figs. 7.7a and 7.7b). This design has the most distinct
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LB ≤ {var} ≤ UB : 0 ≤ ηpi ≤ (5/2)ηs , 1.0× 10−5 ≤ λi ≤ 1.0× 10−2 , 0.01 ≤ αi ≤ 0.5

(a) (b) (c) (d) (e) (f)

Figure 7.6: Sample textured sector and fluid designs in the Pareto set from the multi-mode
Giesekus model case. f1 represents the first objective function (power input [W]) and f2

represents the second objective function (normal force [N]).

(a) (b)

Figure 7.7: Viscoelastic material functions of corresponding sample optimal designs from
the Giesekus model case. (a) shear viscosity, (b) first normal stress difference coefficient.
Curves (a)-(f) correspond to designs (a)-(f) in Figs. 7.5 and 7.6. Viscoelasticity (e.g. polymer
additive) generally increases from design (a)-(f).

elevation changes in the texture, and, similar to the previous case, forms a spiral blade-like

shape. As we see in Case 1, this design has the second-highest plateau value in shear viscosity

as shown in Fig. 7.7a, and high first normal stress difference value as shown in Fig. 7.7b. As

observed in these results, having a larger first normal stress difference at a higher shear rate

has a more significant impact on generating and overall normal force than when operating

in a lower shear rate regime. Although flow described by the Giesekus model can exhibit

second normal stress difference (Ψ2) effects, the results show that magnitudes of Ψ2 are at
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least 1 to 2 orders of magnitude smaller than Ψ1 and do not contribute a meaningful amount

of normal force generation.

Other designs on the Pareto frontier between these two anchor points (refer to design

points (b)–(e) in Fig. 7.5 and Figs. 7.6b–7.6e) also exhibit consistent trends: (1) the surface

texture shapes do not change significantly, but larger elevation changes are needed to acquire

higher normal forces, and (2) an increased polymer viscosity is associated with higher normal

forces, and (3) the nonlinearity (mobility factor) is maintained with low (but non-zero) values

for the entire range of designs.

Thus, for case 2, we can observe an increase in the normal force with a simultaneous

increase in the power input as polymer viscosity values in modes 1 and 2 increase (from design

(b) through (f)). However, all the optimal solutions converged to low mobility factor values,

suggesting that shear-thinning is not desirable. Also, the optimal textures from Case 2 are,

in general, deeper than those for Case 1. Design point (f) in Fig. 7.7b shows a different trend

when comparing to other design points in Case 2 or Case 1. Even though Ψ1 is lower in (f)

than in (e), it produces a larger normal force. This is because the normal force is the integral

of the normal stress difference times the squared shear rate over the entire textured domain.

At the higher shear rate values, (f) is larger than (e), resulting in a larger contribution to

the normal force. This is consistent with the notion that shear-thinning in the normal stress

differences decreases the normal force. Therefore, other designs not considered here that

keep the shear-thinning profile for the viscosity while having a nearly constant Ψ1 across the

desired shear rate range may produce better lubrication results.

To quantify the numerical solver uncertainty, solver parameter sensitivities were analyzed

at the six selected solution points identified as (a)–(f) in Fig. 7.5. The solver parameter

sensitivities are computed using the same procedure described in Section 7.4.1. Deviations in

parameters Ro and ρs produce up to 1% differences in both objective functions. Deviations

in parameters Ω and ηs make changes between 1 to 3% in either or both objectives. With

these results, we can conclude that this numerical solver is reliable for these four parameters.
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Figure 7.8: Explored designs and optimal solutions (nondominated designs) for the Newtonian
fluid model case in the objective function space.

However, a deviation in hmin produces up to 5% change in the first objective (power input)

and about 10% change in the second objective (normal force). Thus, as we concluded earlier,

removing the offset in the gap height between disks is very important for maintaining accuracy

in normal force prediction. Detailed sensitivity analysis results are given in Table C.2 in

Section C.2 of Appendix C.

7.5.3 Case 0: Newtonian Fluid Model Case Result

An additional study is performed here using a Newtonian fluid model with a transient Cauchy

momentum equation to provide a reference solution (Case 0). Solutions of this case are shown

in Fig. 7.8. Optimal solutions have a range of power input from 3.43× 10−4 to 6.73× 10−4

[W], and a range of normal force values from 1.45× 10−4 to 2.51× 10−2 [N]. The labels (a)

through (f) indicating specific marked points in Fig. 7.8 correspond to the texture and fluid

designs given in Figs. 7.9a–7.9f.

Similar to the results obtained from the non-Newtonian fluid studies, we see analogous
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(a) (b) (c) (d) (e) (f)

Figure 7.9: Sample textured sector designs in the Pareto set from the Newtonian fluid model
case. f1 represents the first objective function (power input [W]) and f2 represents the second
objective function (normal force [N]).

trends in the shape of the surface textures. An anchor point with a minimum power input

(shown as design point (a) of Case 0) has a deep and relatively planar textured surface. The

maximum normal force anchor point, shown as design point (f), has a sharp and distinct

asymmetric spiral blade-like texture shape, which directs the fluid pressure radially inward

to generate a positive net normal force.

Other designs on the Pareto frontier between these two anchor points (refer to Points

(b)–(e) in Fig. 7.8 and Figs. 7.9b–7.9e) have a consistent trend; unlike the other two non-New-

tonian fluid cases, the texture designs are notably different from each other. The optimal

designs on the Pareto frontier, in this case, show how changes in texture design only impact

generated normal force values since all the designs have the same Newtonian fluid properties.

Comparatively sudden elevation changes in the texture are observed for the entire set of

design points that generate normal force (specifically see design points (b)–(f)).
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Figure 7.10: A comparison of the optimal solutions (Pareto set) of CEF, Giesekus, and
Newtonian fluid models in the objective function space.

7.5.4 Comparisons and Discussion

Pareto Set Comparison

Figure 7.10 shows Pareto sets for three design studies simultaneously, including CEF (Case

1), Giesekus (Case 2), and Newtonian fluid model (Case 0) studies. Dots represent Pareto-

optimal solutions (design points) in the objective function space, while circles represent the

corresponding utopia points for each of the three design studies.

The study based on the Newtonian fluid model serves as a reference, illustrating how

much normal force can be generated through improved texture design alone without tailoring

non-Newtonian effects. For Newtonian fluids, Pareto-optimal designs span only a small range

of power input levels (from 3.43× 10−4 to 6.73× 10−4 [W]). The maximum possible normal

force generated without aid from viscoelastic effects is 2.51× 10−2 [N].

When parameters that define fluid properties are added as design variables, the maximum

possible normal force generated is increased by a factor of six. The CEF model case exhibits

a maximum possible normal force of 1.50× 10−1 [N], with a corresponding power input of

3.56× 10−3 [W]. Using the multi-mode Giesekus model, we can obtain a maximum normal
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force of 1.29× 10−1 [N], with a corresponding power input of 3.99× 10−3 [W]. Although we

used the same parameterizations for designing fluids in both non-Newtonian fluid cases, we see

a significant difference in normal force generating capability. Design based on more simplified

fluid simulations (i.e., modified Reynolds equation using a CEF fluid model) demonstrated

the ability to identify designs that generate higher normal force values, at least as predicted

by these simplified models.

Analysis of Friction Reduction and Load Supporting Normal Force

As we see in Figs. 7.2, 7.5, and 7.8, the two objectives of decreasing the input power and

increasing the normal force are competing. When trying to minimize the input power, the

optimal solutions indicate no added polymer (resulting in base solvent viscosity) and have

the deepest texture profiles that result in the smallest shear stress. However, when aiming

to maximize the normal force produced, the optimal solutions have polymer additives and

exhibit a spiral-shaped texture profile. Designing the fluid parameters in this region is a

non-trivial task, in part due to non-monotonic relationships between the normal force and the

viscoelastic design parameters. This suggests that optimization of the viscometric functions

plays a key role in performance enhancement.

Model Comparison

Based on the above results, the two fundamental problem types are (1) simultaneous design

of texture and fluid properties, and (2) design of texture-only with fixed fluid properties.

While the simultaneous texture and fluid design problem were solved using two distinct

numerical fluid simulation models, they correspond to the same physical design problem.

Both cases involve using a viscoelastic fluid (polymeric solution) as the lubricant, designing

the fluid properties, and designing the texture shape. The only difference between these

two cases is how the behavior was predicted, and the simplifying assumptions made. We

highlight this point to clarify that the decision between methods can instead be made based
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on the following criteria: (1) computational efficiency, (2) prediction accuracy, (3) range of

numerical limits, and (4) range of types of fluid behaviors that the model can predict. The

models are compared here along these dimensions.

First, the CEF-Reynolds equation has a very efficient computational structure; the

entire optimization using the MO-ASMO algorithm took only 21 minutes, whereas direct

optimization using the NSGA-II algorithm required 85 minutes, both computed using a

dual Xeon Gold 6130 workstation with 64 computing threads. The steady-state solution

can be obtained directly without using a time marching transient solution procedure. Also,

the CEF-Reynolds equation can predict the pressure and stress of the flow field efficiently

within assumptions made during derivation. Since the CEF model can include shear-rate

dependent viscosity and normal stress differences in calculating the velocity and pressure

fields, the nonlinear viscoelasticity observed in our polymeric lubricant can be predicted

well. However, because of the assumptions and limitations underlying the CEF-Reynolds

equation (see Section 7.4.1 and [188]), prediction accuracy may be poor when certain flow

conditions are present, such as recirculation or flow with non-trivial inertial effects. The CEF

model maps material parameters to material properties in a less-constrained way compared

to higher-fidelity options. This additional flexibility results in a wider exploration of designs

in the material property space and higher normal force values, but may result in properties

that are more difficult to realize physically. Within the design ranges of the other models

(power input up to 2.5 [W] and normal force up to 0.1 [N]), this model produces a Pareto

frontier that mostly overlaps with the Pareto frontiers generated using the other models.

Second, the Cauchy momentum equation with a multi-mode Giesekus model is the

most computationally expensive choice, but it can predict the fluid flow very accurately,

including inertial effects, recirculation, and other 3D effects. The Giesekus model can also

include shear-rate dependent viscosity and normal stress difference effects on the velocity and

pressure fields. Thus, this model is the most ideal for complex flow phenomena with nonlinear

viscoelasticity. However, due to numerical instability under certain conditions, particular
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sets of input (shape and fluid) parameter values cannot be evaluated with this solver. Our

MO-ASMO algorithm can handle these “unable-to-obtain-result” points by utilizing feasible

region management functions based on the SVDD strategy. Thus, we improved computational

solution efficiency by avoiding training samples that were incompatible with the model. After

addressing this issue, the MO-ASMO algorithm produced improved solutions. However, even

with the efficient MO-ASMO algorithm, the computation time for this optimization problem

was significant (14 hours using the same machine). The Pareto frontier for this case overlaps

with the CEF model results, but it could not produce designs with comparably high normal

force generation.

It should be noted that the performance metric values reported in these results are based

on distinct model types. One approach to providing a more fair comparison would be to

evaluate Pareto-optimal designs generated by the lower-fidelity approaches via the higher-

fidelity Giesekus model. This was attempted, and unfortunately, a number of nondominated

solutions from Case 0 and 1 approaches resulted in numerical instabilities. Related ongoing

work involves experimental testing of the associated designs to provide an accurate and fair

design method comparison, but this experimental work is outside the scope of this study.

When these ongoing studies are concluded, more complete statements can be made regarding

the behavior and utility of the design methods presented, and whether modifications could

be made to the Case 1 approach to focus design exploration on realizable high-performance

designs.

Texture Shape Comparison

Sample texture shapes of full disks from our design solutions are compared in Fig. 7.11.

Texture designs from the CEF model case are shown in subfigures (a), (d), and (g); texture

designs from the Giesekus model case are shown in subfigures (b), (e), and (h); texture

designs from the Newtonian fluid model case are shown in subfigures (c) and (f). Sample

textures given here are selected to compare the resulting optimal textures between different
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Texture of Fig. 7.3(a) design Texture of Fig. 7.6(a) design Texture of Fig. 7.9(a) design

f1=4.31E-04, f2=6.16E-04 f1=4.42E-04, f2=1.11E-03 f1=3.43E-04, f2=1.45E-04

(a) (b) (c)

Texture of Fig. 7.3(b) design Texture of Fig. 7.6(b) design Texture of Fig. 7.9(e) design

f1=8.69E-04, f2=3.01E-02 f1=9.12E-04, f2=3.12E-02 f1=6.00E-04, f2=2.10E-02

(d) (e) (f)

Texture of Fig. 7.3(f) design Texture of Fig. 7.6(f) design

f1=3.56E-03, f2=1.50E-01 f1=3.99E-03, f2=1.29E-01

(g) (h)

Figure 7.11: Sample textured disk designs in the Pareto set from all three fluid model (CEF,
Giesekus, and Newtonian) cases. f1 represents the first objective function (power input [W])
and f2 represents the second objective function (normal force [N]). (a), (d), (g): results
of CEF model case, (b), (e), (h): results of Giesekus model case, and (c), (f): results of
Newtonian fluid model case. (a), (b), (c) generates nearly-zero normal force, (d), (e), (f)
generates normal force of O(3E-02), and (g), (h) generates normal force over O(1E-01), which
is not available with the Newtonian fluid.
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fluid model cases.

Designs are arranged such that the normal forces generated by each design in a given row

is similar. The first row designs ((a), (b), and (c)) are the textures that generate nearly-zero

normal forces. These surface texture designs are relatively flat with a limited amount of

asymmetry. The second-row designs ((d), (e), and (f)) are the textures that generate normal

forces on the order of 3× 10−2 [N]. These surface texture designs have very sharp and large

elevation changes to create a spiral blade-like pattern, as discussed in Sections 7.4.1–7.5.3.

For the Newtonian fluid model case, which relies on the texture to generate a normal force,

the resulting design ((f)) generates a normal force value close to the highest possible without

non-Newtonian fluid behavior. The third row ((g) and (h)) are the textures that generate

normal force values over 1× 10−1 [N], and are the highest normal force values for each of the

respective design problems. Texture designs are not significantly different from the designs

in the second row. This observation indicates that normal forces higher than what was

purely achievable through only texture design depends solely on viscoelasticity. Further

design studies using sequential design strategies (texture design optimization followed by

fluid design, or vice versa) rather than simultaneous design may provide stronger evidence

for the effects of viscoelasticity on normal force generation.

As described in Section 7.5.4, each simultaneous texture and fluid design study (Cases 1

and 2) used the same design objectives and variables. In other words, they involve the same

design formulation, but use different numerical simulation approaches for prediction. Thus,

unless two different solution sets provide the exact same objective function values, one of

these two sets of solutions may dominate the other. However, it is possible that multiple

solutions exhibit almost identical performance values. This issue is connected to the question

of which fluid model or fluid solver can predict the behavior more accurately. Cross-validation

of one solution with different fluid models, as well as an experimental validation of the

solution, is needed and is a topic of ongoing work.

195



Problem Formulation Discussion

As we discussed earlier in Section 7.2, combined optimization of both fluid and surface

texture in the lubricated sliding contact has not been considered previously. Thus, earlier

efforts do not exist that could be used to build upon or compare to. The simultaneous

problem formulation decisions were based on the discretion of the authors. In addition to the

simultaneous approach used here, other problem formulations could be considered, such as

sequential and nested approaches. It is known that the conventional sequential design process

may not produce system-optimal solutions, while the nested and the simultaneous design

approaches can identify system-optimal designs [201]. The nested design method generally

demands more computational expenses for the simultaneous design method. However, the

nested design may outperform the simultaneous design approach if the following conditions

exist: (1) when the dimension of the design problem is not small and (2) when the inner-loop

subproblem can be solved efficiently [202]. In this study, on the other hand, two different

design targets (fluid and texture) are solved in a single simulation routine (one of the solvers

presented in Section 7.4.1). Consequently, separating these two design targets into inner

and outer loops is computationally inefficient, although formulating the design problem as a

single optimization problem results in a large number of design variables.

While selecting a simultaneous formulation had clear benefits, determining an effective

design representation for the fluid material functions was less straightforward. Using the

Giesekus fluid parameterization for designing the material functions limits the solution within

certain types of complex fluids. Using the Giesekus fluid parameterization does not mean

that the solution fluid is only achieved by the polymeric additives; the same solution may

be achieved via multiple different chemical and molecular formulation strategies. However,

using a different class of fluids may result in fluid properties that cannot be realized by the

Giesekus fluid parameterization. Investigating a variety of fluid parameterizations is beyond

the scope of this study, but is an important open research question, and foundational work
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has been performed recently in areas including organizing different models for design [185],

model selection studies [136], and database descriptions of complex rheological properties

[186].

7.6 Conclusion

In this study, we designed non-Newtonian lubricant properties and surface texture simultane-

ously for lubricated sliding contact using the MO-ASMO algorithm and two non-Newtonian

fluid models. The Giesekus fluid parameterization used for both constitutive models provides

practical and physically-achievable material function shapes, but it is acknowledged that

this parameterization strategy may limit fluid system design performance. Different models

and design representations would be required to explore such an expanded design space, but

would likely come at the cost of increased solution complexity and computational expense.

We obtained nondominated optimal design solutions (i.e., Pareto sets), and compared a set

of sample texture and fluid design results. We identified trends in texture shapes, which

agreed with trends from our previous studies, observed fluid parameter trends, and identified

how fluid design influences objective function values.

The MO-ASMO algorithm was applied successfully to solve this simultaneous fluid and

texture design problem with two objectives. A direct optimization (using either nonlinear

program (NLP) or genetic algorithm (GA)) was impractical given our computational resources

(specifically for Case 2). The MO-ASMO algorithm enables accurate solutions without

requiring access to exceptionally high-performance computing resources. A specific challenge

arises when attempting to use general-purpose NLP algorithms due to the Giesekus model

stability properties. Certain combinations of texture shape and fluid parameter values cause

model divergence. An explicit and precise description of the boundary between compatible

and incompatible parameter values is not available, making direct application of standard

NLP solvers impractical. The MO-ASMO algorithm mitigates these issues effectively using
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the SVDD strategy for adaptively constructing an explicit boundary between regions with

acceptable input values and those that lead to divergence. Our use of the SVDD strategy is

differentiated from others by encapsulating observed invalid input regions to avoid during

the exploration stage, which ensures a comprehensive exploration of the entire computable

design space.

We observe that added viscoelasticity to the Newtonian solvent significantly increases

normal force generation from the numerical optimization results in this study. All the optimal

texture designs are qualitatively similar in shape to our earlier studies based on a Newtonian

lubricant, but viscoelasticity plays a vital role in increasing normal force generation by up to

a factor of five without a significant change in texture design. We see that optimal textures

obtained with Newtonian and non-Newtonian fluids resulted in different shapes and elevation

changes. This shows that the simultaneous design of the non-Newtonian lubricant and surface

texture is necessary to achieve overall higher system performance.

A comprehensive set of physical experiments to compare performance indices (power

input and normal force) for a carefully-selected set of numerically-optimized texture and fluid

designs is a topic of ongoing work. Preparation for the experimental measurement requires a

micro-fabrication of textured disks and a formulation of viscoelastic lubricants. Observing

that all the design solutions on the Pareto frontier have different fluid properties, a set of

representative sample designs will need to be selected carefully for comparison with simulation

results. Experimental texture fabrication, fluid formulation, and testing are outside the scope

of this investigation, which is focused on simulation-based optimization studies. Such future

work will build upon the targets identified in our work here, which combine the simultaneous

and coupled effects of both texture and viscoelastic fluid properties.
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Chapter 8

Conclusions and Outlook

8.1 Summary of Contributions

This dissertation presented methods for the integrated design of viscoelastic (VE) materials

and structural geometry. The studies in this dissertation proposed a new way of designing

with VE materials by combining system design considerations with integrated materials and

structural geometry design. Unlike other materials studies driven by specifically intended

material behaviors or characteristics, the performance-driven approach presented in this

dissertation is distinct in the overall objective that aims to agnostically find optimal material

characteristics specifically tailored for the overall system design problem.

The studies presented in this dissertation provide clear answers to the research questions

raised in each chapter. Answering these research questions demanded novel findings that

ultimately resulted in novel design principles for performance enhancement and solution

efficiency. Surface textures were limited to predefined shapes in the previous literature, but

these predefined shapes unnecessarily constrain the design space. The fore-aft asymmetry

profile, under this relaxation, transforms into a spiral blade shape, which directs pressure

toward the center. Relaxing these unnecessary geometric design constraints allowed perfor-

mance enhancement of more than order of magnitude. The studies also showed that the

normal stress differences generate load-carrying normal force regardless of the shear direction

through the profile of the fore-aft asymmetry. Finally, the study showed the effectiveness of

the integrated design approach using VE lubricant and structural geometry.

The chapters included in this dissertation are classified into two parts—Part I: Method-
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ologies for surface texture design, and Part II: Integrated design with viscoelasticity. The

chapters illustrate methodologies for and demonstrations of system-level performance-driven

simultaneous material and structural design. As a whole, the dissertation studies present the

exploitation of design spaces that are often unexplored by established design strategies; this

is accomplished through (1) general and unrestrictive texture parameterizations, (2) design

strategies and formulations that enable solving high-dimensional design problems, (3) use of

design-appropriate models and representations for viscoelasticity, and (4) efficient numerical

design algorithms and structures that help to solve challenging design problems, specifically

with VE material systems. The obtained design results were analyzed to provide insights that

connect design solutions with the mechanisms of governing physics and physical implications.

Chapter 2 presented a study that focuses on the improvement of frictional performance—

minimizing frictional loss and maximizing load-carrying capacity—in systems with full-film

lubricated sliding contact and textured surfaces. Previous studies used predefined texture

shapes, such as cylindrical dimples or other polygonal dimple arrays, to achieve a better

frictional performance of the lubricated sliding contact [17, 21, 22, 27]. By eliminating

unnecessary predefined texture shape assumptions and allowing general texture topography,

both performance indices were improved in exceptional ways. The study presented incremental

transitions from the conventional dimple textures to more sophisticated texture design

parameterizations, and revealed that having less restrictive design representations can achieve

system performance improvement by over an order of magnitude. The study also offered

insights into the underlying mechanisms leveraged by these designs to improve performance.

The free-form optimal texture profiles consist of asymmetric expansion-contraction channels,

following the trends that the previous study [30] already suggested. In addition to the

asymmetry, the optimal texture contours result in spiral texture geometries. The spiral

blade-like texture profile acts as a converging channel directing flow radially inward, and this

concentrated pressure near the disk center generates a positive net normal force, helping to

achieve increased load-carrying capacity and reduced leakage at the outer boundaries.
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Chapter 3 presented a development of the texture design optimization model to capitalize

on problem structure to support increased design fidelity. Specifically, a mathematically-

equivalent reformulation of the fluid mechanics model was discovered that was amenable

to linearization, which then enabled the formulation of a sequential linear programming

(SLP) strategy that supported simultaneous improvement in design representation fidelity

and computational efficiency. The study presented in Chapter 2 achieved an efficient solution

by reducing the design dimension using the spline texture representation and solving the

nonlinear program (NLP), treating the simulation as a black-box. However, in this study,

the fluid flow simulation and the design optimization formulations are integrated within the

same system of equations, by introducing a new optimization variable involving both the

pressure gradient and the cube of gap height at each mesh node location. In this way, the

flow simulation and the optimal texture design problems could be solved simultaneously. This

transformation supports the linearization of the governing equations and design objectives,

and the SLP is used with a trust-region method and the ε-constraint method to obtain

Pareto-optimal texture designs with a high-dimension texture design resolution. The results

showed that the SLP solution with higher design resolution is at least an order of magnitude

faster than the lower-resolution black-box optimization. In addition, a well-selected starting

point was discovered to be sufficient for identifying all Pareto-optimal solutions, in contrast

to the NLP solutions, where a multi-start strategy was required for each solution point.

However, the SLP method exhibits several clear limitations. Since the trust-region is the only

bound for the monotonic linear problem formulation, the solution relies on the convergence

of the trust-region steps, and cannot explore outside the trust-region at each trial. Several

SLP method improvements are suggested for future research, including the ability to explore

from an arbitrary design point as a starting point and implementation of a sophisticated

stepping method to enhance solution performance further.

Chapter 4 presented novel efficient sampling strategies and implicit constraint manage-

ment strategies included with a new framework, termed here as multiobjective adaptive
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surrogate model-based optimization (MO-ASMO), for efficient solution of surrogate-based

multiobjective optimization problems (SB-MOPs). Many efforts in the adaptive surrogate

modeling (ASM) have successfully resolved challenges for single-objective optimization prob-

lems (SOPs). However, there exist additional challenges that have not been addressed for

solving multiobjective optimization problems (MOPs) using surrogate-based optimization

(SBO). One of the issues we observed from the previous literature is that a possible coupling

between the nature of MOPs and sampling strategies has not been thoroughly investigated.

Adaptive sampling strategies typically place additional samples near the predicted design

solution, which for single-objective problems takes the form of a single point in the design

space, frequently with a higher concentration in descending directions. However, MOPs

generally have multiple points as a set of design solutions (a predicted Pareto set) with

distances between neighboring points that can vary significantly. Locating new sample points

using general-purpose sampling methods for each design point in the Pareto set could be

possible. However, this strategy will likely require more samples to achieve a given level of

MOP solution accuracy, and cannot take the samples generated by the neighboring solutions

into consideration. Thus, the new sampling strategies specifically developed for SB-MOPs

is required. Future work should include comparative studies between standard adaptive

sampling strategies applied to MOPs, and simultaneous sampling strategies that account

for all intermediate Pareto-set solutions to provide quantitative insight into the overall

effectiveness of candidate sampling methods.

New strategies presented in this chapter are driven by demands in solving challenging

high-dimensional, expensive, and black-box (HEB) MOPs with tight and narrow feasible

regions. The strategy involved partitioning of expensive and inexpensive function evaluations,

and selectively evaluate them at different adaptive refinement stages. The developed sampling

strategies are especially effective in avoiding regions in the design space where additional

information is not valuable, or the simulation is likely to fail. Also, the sampling strategy for

the exploitation of predicted solution regions was developed specifically for MOPs, where the
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obtained solution is a set of Pareto-optimal points rather than a single design point. Also, for

problems with frequent simulation failures, an implicit boundary generation method using

the support vector domain description (SVDD) is proposed. With this method, a significant

improvement over the Pareto frontier is observed, while limiting the number of full model

evaluations to a reasonable level. Using the developed MO-ASMO framework, we expect to

explore challenging MOPs previously not exploited well. However, there are gaps that need

to be addressed in future studies, including mathematical formulations that can overcome the

curse of dimensionality, robust sampling and convergence schemes and hybrid methods that

do not rely on stochastic elements, and a deeper investigation of balancing exploitation and

exploration, to achieve better performance of robustly identifying globally-optimal solutions

for challenging HEB MOPs.

Chapter 5 presented a survey of existing numerical design strategies and efficient techniques

that can be applied for solving expensive VE relaxation stress-strain relations. A one-

dimensional stress relaxation equation for linear viscoelastic (LVE) materials is discussed

and analyzed with respect to challenges regarding the convolution integral terms. Several

different numerical approaches for integrating the convolution term were discussed, in both

frequency- and time-domains. Improving upon computationally-expensive direct integration,

several techniques that can mitigate the computational effort are introduced. Especially,

the linear time-invariant state-space (LTISS) system approximation [148, 154] opens a large

possibility that many other efficient single-step algorithms can be applied to design LVE

materials. Possible applicability of the derivative function surrogate modeling (DFSM)

[153] is also discussed for dynamic systems that have expensive derivative functions. The

chapter summarized different design methodologies that can be applied for solving integro-

differential equations (IDEs) that involve convolution integrals. The study also suggested a

future research topic focusing on how design parameters can be formulated and manipulated

independently to constrain the design solutions within the design regions where the material

design solutions are guaranteed to be physically-realizable options.
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Chapter 6 specifically presented continuous relaxation spectra design representations for

LVE materials. With a view of criteria for the design-appropriate material models established

in Corman et al. [12], the LVE material representations were analyzed, and a rationale

for selecting the continuous relaxation spectra design representation was presented. The

study included transformations between the VE relaxation modulus function and continuous

relaxation spectrum, where one transformation direction is straightforward, whereas the other

direction is a mathematically ill-posed problem. A demonstration of two-way transformations

is presented with several different approximation methods, including the Alfrey and Doty

[169], Schwarzl and Staverman [168], and least square approximation methods. A quarter-car

automotive suspension test problem with a viscoelastic damper (VED), presented in Chapter 4,

is again solved using several LVE material design representations, and the results are visualized

in an Ashby-style reduced-dimensionality representation space, introduced by Corman and

Ewoldt [132] for delivering intuitive optimal material characteristics. Possible future works

are identified for extending the impact of this work. Expected future topics include finding

mathematical frameworks for other rheological quantities (e.g., thixotropy, shear-thinning,

and other nonlinear material responses), handling material design constraints that will

potentially lead physically-realizable materials, and the enhanced reduced-dimensionality

design representations that can exhibit multiple peaks in the relaxation spectrum.

Chapter 7 presented an integrated design of non-Newtonian lubricant material properties

and surface texture geometrical structure to achieve improved performance beyond what is

available only through surface texture design changes with Newtonian fluids. The design

problem was solved with two different VE material models (the Criminale-Ericksen-Filbey

(CEF) and multimode Giesekus models), and compared to the design solutions with Newtonian

fluid as a lubricant. The MO-ASMO framework presented in Chapter 4 was applied to solve

this simultaneous fluid and texture design problem with two objective functions. Specifically,

MO-ASMO made solution possible with reasonable computational effort, with the capability

to efficiently place training samples with separately-evaluated inexpensive constraints, and
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to adaptively manage implicit constraint boundaries where excessive simulation failures were

observed. This capability is specifically needed for the Giesekus fluid model due to its stability

properties. Certain combinations of texture shape and fluid parameter values cause model

divergence, and the explicit and precise a priori description of boundaries around these input

regions is not available. The solution suggests that added viscosity significantly increases

normal force generation because the normal force differences (coefficients: Ψ1 and Ψ2) create

stress elements perpendicular to the shear direction. After a certain level of normal force

is achieved, the texture shape mostly remains identical, and the fluid property changes to

obtain increased normal force levels. An important observation is that the design solutions

are different depending on the material models we used for the optimization, although these

cases involve the same physical design problem. This issue is connected to the question of

which fluid model or fluid solver can predict the behavior more realistically. Cross-validation

of solutions with multiple solvers, as well as an experimental validation of the solution, is

needed and suggested as a future research topic.

8.2 Extension of Dissertation Research

Throughout the dissertation research, the studies have been carefully conducted with validated

numerical methods and solvers. The Reynolds equation solver for Newtonian fluid and texture

used in Chapters 2 and 3 was rigorously validated with experimental data in Schuh et al. [36],

and numerical limits in nominal depth were identified in Lee et al. [4]. The non-Newtonian

fluid and texture solvers used in Chapter 7 were validated using experimental data from

tests using cone-and-plate geometry for a range of concentrations of polyisobutylene (PIB)

solution in a Newtonian mineral base oil, given in the supplementary material of Lee et al.

[13] and in Appendix C.1. The CEF model and the Giesekus model fluid and texture solvers

are further validated with dimple-shaped textures in Schuh [188] and Schuh and Ewoldt

[203], respectively. However, these fluid and texture solvers are experimentally validated
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with a limit of predefined texture shapes of symmetric and asymmetric cylindrical dimples

and inclined planes. Design solutions of the studies conducted in this dissertation have

following characteristics: (1) texture designs span a full range of disk area, (2) texture designs

have arbitrary continuous height profiles over the two-dimensional coordinate system, (3)

non-Newtonian fluid design parameters define the polymeric contribution, relaxation time,

and nonlinearity of the fluid properties, and (4) the Giesekus fluid design parameterization is

selected for polymeric solutions in the fabrication of the non-Newtonian fluids for experiments.

Planned extensions of this dissertation research will include experimental validation studies

for the texture designs presented here.

The objectives of this planned experimental research are (1) to validate the numerical

fluid and texture solvers with the optimal design solutions, (2) to validate the optimality of

the design solutions to evaluate design methods utilized in the previous chapters, and (3) to

provide methodologies for the integrated design of VE materials and structural geometry

with an experiment-in-the-loop optimization process. The numerical design solutions suggest

that the spiral blade-like periodic grooves that direct flow inward generates net positive

normal force. Possible simplification of this general shape could be a combination of depth

of the groove, spiral angle-to-radius (θ/Ro), expanding slope, and contracting slope. This

simplification enables the exploration of a wide range of texture shapes in the experimental

study, but while maintaining the characteristic shape of the optimal texture design solutions.

The textures will be fabricated using the stereolithography (SLA) process, with the geometric

dimensions of Ro = 20 mm and h0 = 269 µm. The fluids will be fabricated using a PIB with

Mn = 600 kg/mol, MW = 1, 000 kg/mol, and Mv = 1, 200 kg/mol, as listed by Sigma-Aldrich,

dissolved in the Cannon Instrument general-purpose viscosity standard S6 mineral oil at

various concentrations. The VE material functions at these various concentrations will be

obtained by cone-and-plate rheometric material characterizations, and will be fitted with

the steady-state Giesekus model parameters. These fluid model fitting data will be provided

to construct a simple surrogate model representing the PIB concentration with respect
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to the fluid parameter values. This way, it will be possible to continuously estimate the

optimal concentration of the PIB with the design solution with material function parameters.

Possible outcomes of this planned experimental study are (1) a comparison between the

numerical solution and the experimental measurement of optimal free-form height profiles of

the texture spanning a full area of the disk, (2) optimality and sensitivity analyses of fluid

and geometry parameters using parameter sweeps, and (3) a model that connects the PIB

solution concentration to the Giesekus fluid model parameters.

8.3 Outlook

Design representations play a key role in the success of engineering design problems. Different

texture design parameterizations resulted in different ranges of performance levels. Depending

on the material model representations, the level of freedom in design space could vary, and

increased freedom enhances the possibility of discovering fundamentally novel material system

designs. On the other hand, the freedom given by certain material models leads the solution to

reach an impractical design region due to unknown physical constraints. Thus, selecting and

formulating appropriate design representations is very important in problems with complex

natures.

Figure 8.1 shows a conceptual three-axis coordinate system of metrics indicating charac-

teristics of models for design. Here, greater distance from the origin indicates improvement.

In this figure, as an example, two different models used in Chapters 2 and 3 are compared.

As we discussed in Chapter 3, different design models and representations have different

characteristics, although the design problem remains the same. The SLP method exhibited

higher design dimensionality, supporting enhance design freedom, and resulted in an order-of-

magnitude faster solution time compared to the NLP reference model. Thus, the SLP model

can be indicated with larger axis values for design representation fidelity and computational

efficiency in Fig. 8.1, indicating improvement along both dimensions. However, the analysis
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Figure 8.1: Models used in design optimization can be conceptually presented in three-
axis coordinate system of (1) design representation fidelity, (2) analysis accuracy, and (3)
computational efficiency. Outward direction is superior for all three axes.

result was not different depending on the solver formulations. The SLP method provided

analysis accuracy that is comparable to the accuracy of the solution with the black-box model

(used with NLP). Thus, both models have the same coordinate location for the analysis

accuracy axis in this conceptual model.

With this or similar model comparison frameworks, the material models may be com-

pared in visually-intuitive ways. Pipkin [124] space maps material models with De and Wi

number space, and these two metrics characterize different rheological material responses well.

Combining the concepts presented in Figure 8.1 and the Pipkin space, rheological material

models can also be classified and mapped not only by rheological characteristics, but also by

design-appropriateness as well, and this work is left for a topic of future research.

This dissertation focused on the system-level performance-driven integrated design of

materials and structural geometry. This approach is particularly useful when these designed

materials are used directly for practical applications for which the design problem is being

solved. However, designing materials have more difficulties beyond those addressed in this

dissertation. When optimal rheology is obtained, these rheological characteristics need to

be realized with available material systems. Thus, the resulting rheological design needs to
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Figure 8.2: A comprehensive design framework that combines higher system-level design and
lower microscopic mechanics of material-level design processes. (a) System-level performance-
driven integrated design process presented in this dissertation. (b) Material-specific mi-
crostructural level design process. (c) Comprehensive design approach that combines both
(a) and (b) processes.

connect to the molecular microstructures, microscopic material systems, and submicroscopic

mechanisms of the materials. There is a possibility that multidisciplinary design optimization

(MDO) architectures and strategies can play a role in solving such problems. From the

system-level to submicroscopic levels, multidisciplinary models need to be holistically solved

to obtain realizable material design solutions, and MDO strategies can help solve these

problems.

Figure 8.2 shows a high-level structure of the larger integrated design framework, combining

the current system-to-rheology design effort presented in this dissertation (given in Fig. 8.2a)

with material-specific design processes (given in Fig. 8.2b). Importantly, combining these two

processes will provide information coming from the mechanics of the material systems (e.g.,

microscopic material characteristics and limits) fed back to the rheology- and system-level

design process, enabling the realization of designed materials in a comprehensive framework.

8.4 Concluding Remarks

This dissertation presented integrated design methodologies, numerical techniques, and

solution procedures and insights obtained from solving practical engineering design problems.

209



Integrated design approaches provided significant design enhancement, mostly at least an order

of magnitude better along more than one objective function index. Design methodologies and

texture design representations presented in Part I were effective in achieving the dissertation’s

goals. Material design representations, and practical integrated material and structural

geometry designs presented in Part II, successfully demonstrated the advantages of using the

proposed integrated design approach and numerical design methodologies.

The methodologies and design practices presented in this dissertation will impact new,

unprecedented engineering design opportunities with the paradigm of designing VE materials

simultaneously with other system design elements. This new paradigm opens up more

expansive possibilities for better designs by exploiting material systems in a holistic approach.

Also, the developed design optimization tools (such as the trust-region-assisted SLP method

for high-dimensional design problem coupled with simulation, and the MO-ASMOs framework

developed for solving challenging SB-MOPs) can be utilized to open up more unexploited

design spaces in various domains of engineering design. Suggested topics of future work,

including design model comparison framework and multilevel, multiscale, multidisciplinary

optimization frameworks, may also have an impact that potentially enables the use of novel

materials and discovery of new materials designed based on rational design processes and

information. These wide-open possibilities will benefit design engineers by enabling the use

of complex materials in their design processes, which was previously not easily-accessible,

and will expand impact toward our larger society with more efficient and sustainable ways of

development, driven by the utilization of efficiently-designed materials.
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Appendix A

Viscoelastic Materials and Pipkin Space

A.1 Dimensionless Groups for Viscoelasticity

Many rheologically-complex materials, including linear and nonlinear viscoelastic materials,

have characteristic timescales. With material relaxation timescale λ and other extrinsic

quantities, such as shear rate λ̇, frequency ω̇, and observation time tchar, two dimensionless

numbers can be defined as

Deborah number: De =
λ

tchar

or λω, and (A.1a)

Weissenberg number: Wi = λγ̇. (A.1b)

The Deborah number defines a ratio of the material’s relaxation timescale to the observa-

tion time, representing relatively how fast stress relaxation is occurring to the observation

time or characteristic time [123]. When the relaxation time is relatively smaller than the

observation time (De� 1), the material exhibits fluid-like behavior. The Newtonian fluid is

the limiting case with De→ 0. When the relaxation time is larger than the observation time

(De � 1), the material exhibits solid-like behavior. The elastic solid is the other limiting

case with De→∞.

The Weissenberg number defines a dimensionless shear rate, that can be interpreted as

a ratio of elastic to viscous force, or a ratio between two different timescales [112]. Linear

viscoelastic (LVE) materials exhibit linear relationship between stress and strain at any given

time, which allows linear superposition, in addition to the memory effect that Boltzmann
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proposed for the LVE. The LVE assumption is only valid in the region with low Wi numbers.

Also, in many cases, the materials exhibit only one timescale, and in this case we use De as

the choice of dimensionless number [112].

A.2 Pipkin Space
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Figure A.1: Pipkin Space [124]

Pipkin space in Fig. A.1 (adapted from Pipkin [124, p. 133]) describes classes of rheological

materials in a distorted two-dimensional map of the Deborah number (relaxation time) and

the Weissenberg number (amplitude) space. The LVE is located in the region that has small

amplitude, but all ranges of the relaxation time. Beyond the small amplitude region, the

largest space that has the ‘?’ symbol can be described as a region for nonlinear viscoelasticity.

This region can include wide range of material classes with different characteristics, and

cannot be represented by a single or a few constitutive equations.
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Appendix B

Derivation of CEF-Reynolds Equation

We use the Criminale-Ericksen-Filbey (CEF) model in the incompressible Cauchy-Momentum

equations [112, 195],

∇ · u = 0 (B.1a)

ρ

(
∂u

∂t
+ [u · ∇]u

)
= −∇p+∇ · τ (B.1b)

τ = η (γ̇) γ
(1)
− 1

2
Ψ1 (γ̇) γ

(2)
+ Ψ2 (γ̇)

[
γ

(1)
· γ

(1)

]
, (B.1c)

where the u is the velocity vector, p is the pressure, and ρ is the fluid density, the gradient

and divergence operators are appropriate for cylindrical coordinates, and the coordinate

system is defined in Fig. B.1.

Figure B.1: Periodic cell of textured surface in cylindrical coordinates. The coordinate system
and directions of motion are defined as shown.

We can simplify the governing equations in the thin film limit by assuming:

1. h(r, θ)/R → 0; thin film approximation to neglect velocity gradients in the flow

direction.
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2. The shear rate is

γ̇ (r, θ) ≡
√

1

2
γ

1
: γ

1
≈ rΩ

h (r, θ)
, (B.2)

which is independent of z, where Ω is the angular velocity of the flat plate.

3. Ψ2 = 0, so that τzz = 0.

Under these assumptions, the incompressible Cauchy momentum equations simplify to

1

r

∂

∂r
(rur) +

1

r

∂uθ
∂θ

+
∂uz
∂z

= 0 (B.3a)

−∂p
∂r

+ η (γ̇)
∂2ur
∂z2

+
Ψ1 (γ̇)

r

[(
∂ur
∂z

)2

−
(
∂uθ
∂z

)2
]

+ ρ
u2
θ

r
= 0 (B.3b)

−1

r

∂p

∂θ
+ η (γ̇)

∂2uθ
∂z2

+
2Ψ1 (γ̇)

r

[(
∂ur
∂z

)(
∂uθ
∂z

)]
− ρuruθ

r
= 0 (B.3c)

−∂p
∂z

= 0, (B.3d)

with boundary conditions on the velocity field

ur (z = −h (r, θ)) = ur (z = 0) = 0 (B.4a)

uθ (z = −h (r, θ)) = 0, uθ (z = 0) = rΩ (B.4b)

uz (z = −h (r, θ)) = uz (z = 0) = 0 (B.4c)

to satisfy the no slip and no penetration conditions, where ur, uθ, and uz are the velocities in

the r, θ, and z directions respectively. The resulting simplified Cauchy momentum equations

are a set of coupled, non-linear, second order partial differential equations (PDEs) for the

velocity.
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B.1 Perturbation Solution

Because the governing equations are a set of coupled, non-linear PDEs, we choose to solve for

the velocity and pressure fields using a regular perturbation expansion in both the Reh and

De for both the velocity and the pressure [204–206]. We use the non-dimensional variables

r∗ =
r

R
(B.5a)

z∗ =
z

h0

(B.5b)

u∗r =
ur
RΩ

(B.5c)

u∗θ =
uθ
RΩ

(B.5d)

u∗z =
uz

RΩ
(
h0
R

) (B.5e)

η∗ =
η (γ̇)

η0

(B.5f)

Ψ∗1 =
Ψ1 (γ̇)

Ψ10

(B.5g)

p∗ =
p

η0Ω
(
R
h0

)2 (B.5h)

where R is the outer radius of the textured disk, h0 is the maximum gap height, η0 is the

shear shear viscosity, and Ψ10 is the zero shear normal stress difference coefficient.

Substituting the non-dimensional variables into the governing equations gives

1

r∗
∂

∂r
(r∗u∗r) +

1

r∗
∂u∗θ
∂θ

+
∂u∗z
∂z∗

= 0 (B.6a)

−∂p
∗

∂r∗
+ η∗

∂2u∗r
∂z∗2

+ De
Ψ∗1
r∗

[(
∂u∗r
∂z∗

)2

−
(
∂u∗θ
∂z∗

)2
]

+ Reh
u∗

2

θ

r∗
= 0 (B.6b)

− 1

r∗
∂p∗

∂θ
+ η∗

∂2u∗θ
∂z∗2

+ De
2Ψ∗1
r∗

[(
∂u∗r
∂z∗

)(
∂u∗θ
∂z∗

)]
− Reh

u∗ru
∗
θ

r∗
= 0 (B.6c)

−∂p
∗

∂z∗
= 0 (B.6d)
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where we have defined the Reynolds number as Reh ≡ ρΩh20
η0

and the Deborah number as

De ≡ Ψ10Ω
η0

.

We expand the velocity and pressure fields using a regular perturbation expansion in

both the Reh and De [204–206],

u∗r = u∗r0 + Rehu
∗
rI

+ Deu∗rE +O
(
Re2

h,De2
)

(B.7a)

u∗θ = u∗θ0 + Rehu
∗
θI

+ Deu∗θE +O
(
Re2

h,De2
)

(B.7b)

u∗z = u∗z0 + Rehu
∗
zI

+ Deu∗zE +O
(
Re2

h,De2
)

(B.7c)

p∗ = p∗0 + Rehp
∗
I + Dep∗E +O

(
Re2

h,De2
)
. (B.7d)

We expand in this manner because in the limit that both the Reh and De tend to 0, we

should recover the governing equations for the traditional Reynolds equation [36, 42].

After substituting the expansions into the governing equations and collecting the same

order terms, we obtain the following non-dimensional equations:

0th Order Terms

1

r∗
∂

∂r

(
r∗u∗r0

)
+

1

r∗
∂u∗θ0
∂θ

+
∂u∗z0
∂z∗

= 0 (B.8a)

η∗
∂2u∗r0
∂z∗2

− ∂p∗0
∂r∗

= 0 (B.8b)

η∗
∂2u∗θ0
∂z∗2

− 1

r∗
∂p∗0
∂θ

= 0 (B.8c)

∂p∗0
∂z∗

= 0 (B.8d)

Order Reh Terms

1

r∗
∂

∂r

(
r∗u∗rI

)
+

1

r∗
∂u∗θI
∂θ

+
∂u∗zI
∂z∗

= 0 (B.9a)

η∗
∂2u∗rI
∂z∗2

− ∂p∗I
∂r∗

+
u∗

2

θ0

r∗
= 0 (B.9b)
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η∗
∂2u∗θI
∂z∗2

− 1

r∗
∂p∗I
∂θ
− u∗r0u

∗
θ0

r∗
= 0 (B.9c)

∂p∗I
∂z∗

= 0 (B.9d)

Order De Terms

1

r∗
∂

∂r

(
r∗u∗rE

)
+

1

r∗
∂u∗θE
∂θ

+
∂u∗zE
∂z∗

= 0 (B.10a)

η∗
∂2u∗rE
∂z∗2

− ∂p∗E
∂r∗

+
Ψ∗1
r∗

[(
∂u∗r0
∂z∗

)2

−
(
∂u∗θ0
∂z∗

)2
]

= 0 (B.10b)

η∗
∂2u∗θE
∂z∗2

− 1

r∗
∂p∗E
∂θ

+
2Ψ∗1
r∗

[(
∂u∗r0
∂z∗

)(
∂u∗θ0
∂z∗

)]
= 0 (B.10c)

∂p∗E
∂z∗

= 0 (B.10d)

To simplify the total number of governing equations, we combine the corresponding

equations for the order Reh and order De terms, since both equations are linear in the

variables of interest and both must satisfy the incompressibility constraint. After performing

the superposition, we introduce new variables, defined as

u∗r1 = u∗rI + u∗rE (B.11a)

u∗θ1 = u∗θI + u∗θE (B.11b)

u∗z1 = u∗zI + u∗zE (B.11c)

p∗1 = p∗I + p∗E (B.11d)

so that the resulting equations are

1

r∗
∂

∂r

(
r∗u∗r1

)
+

1

r∗
∂u∗θ1
∂θ

+
∂u∗z1
∂z∗

= 0 (B.12a)

η∗
∂2u∗r1
∂z∗2

− ∂p∗1
∂r∗

+
Ψ∗1
r∗

[(
∂u∗r0
∂z∗

)2

−
(
∂u∗θ0
∂z∗

)2
]

+
u∗

2

θ0

r∗
= 0 (B.12b)

218



η∗
∂2u∗θ1
∂z∗2

− 1

r∗
∂p∗1
∂θ

+
2Ψ∗1
r∗

[(
∂u∗r0
∂z∗

)(
∂u∗θ0
∂z∗

)]
− u∗r0u

∗
θ0

r∗
= 0 (B.12c)

∂p1

∂z∗
= 0. (B.12d)

In dimensional form, this gives us the final set of governing equations with appropriate

boundary conditions. Once the 0th order terms are known, the 1st order terms can be

obtained.

0th Order

1

r

∂

∂r
(rur0) +

1

r

∂uθ0
∂θ

+
∂uz0
∂z

= 0 (B.13a)

η (γ̇)
∂2ur0
∂z2

− ∂p0

∂r
= 0 (B.13b)

η (γ̇)
∂2uθ0
∂z2

− 1

r

∂p0

∂θ
= 0 (B.13c)

∂p0

∂z
= 0 (B.13d)

ur0 (z = −h (r, θ)) = ur0 (z = 0) = 0 (B.13e)

uθ0 (z = −h (r, θ)) = 0, uθ0 (z = 0) = rΩ (B.13f)

uz0 (z = −h (r, θ)) = uz0 (z = 0) = 0 (B.13g)

1st Order

1

r

∂

∂r
(rur1) +

1

r

∂uθ1
∂θ

+
∂uz1
∂z

= 0 (B.14a)

η (γ̇)
∂2ur1
∂z2

− ∂p1

∂r
+

Ψ1 (γ̇)

r

[(
∂ur0
∂z

)2

−
(
∂uθ0
∂z

)2
]

+ ρ
u2
θ0

r
= 0 (B.14b)

η (γ̇)
∂2uθ1
∂z2

− 1

r

∂p1

∂θ
+

2Ψ1 (γ̇)

r

[(
∂ur0
∂z

)(
∂uθ0
∂z

)]
− ρur0uθ0

r
= 0 (B.14c)

∂p1

∂z
= 0 (B.14d)

ur1 (z = −h (r, θ)) = ur1 (z = 0) = 0 (B.14e)
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uθ1 (z = −h (r, θ)) = uθ1 (z = 0) = 0 (B.14f)

uz1 (z = −h (r, θ)) = uz1 (z = 0) = 0 (B.14g)

B.2 CEF-Reynolds Equation

We solve the governing equations given in the boxes above in the same manner as the tradition

Reynolds equation [36, 42]. The steps are:

1. Obtain the velocities in the r and θ direction in terms of the unknown pressure field

and the boundary conditions.

2. Substitute the obtained velocities into the incompressibility equation.

3. Integrate over the z direction and use Leibniz’s rule for integrating the derivatives in

the r and θ direction.

Using these steps, we eventually obtain two equations for the unknown pressure fields p0

and p1, given as

0th Order

1

r

∂

∂r

(
rh3

12η

∂p0

∂r

)
+

1

r

∂

∂θ

(
h3

12ηr

∂p0

∂θ

)
=

1

r

∂

∂θ

(
rΩh

2

)
(B.15)

1st Order
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(
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1
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1

r
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Gθ =
rΩh
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Aθ =

(
1

(ηΩ)2 r
∂p0

∂r

∂p0

∂θ

(
h

r

)4
)

(B.16g)

Equation B.15 resembles the traditional form of the Reynolds equation in cylindrical

coordinates [36, 207], and includes shear thinning. Equation B.16a also resembles the

traditional Reynolds equation, and the right hand side depends on the local Reynolds number

Reh and the local relation of elasticity to viscosity, which can be interpreted as a local

Deborah number, De.

Once Equations B.15 and B.16a are solved (with suitable boundary conditions), the

velocity field can be obtained. The obtained pressure and velocity fields can then be used to

calculate the normal force and torque on the moving flat plate.
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Appendix C

Experimental Validation and Sensitivity
Analysis of Fluid and Texture Solvers

C.1 Experimental Validation Using Cone-and-Plate

Rheometer

The thin-film Reynolds equation with Criminale-Ericksen-Filbey (CEF) fluid (CEF-Reynolds)

and the full 3-D momentum equation with Giesekus fluid (Giesekus-3D) solvers are validated

against steady shear experiments for varying concentrations of polyisobutylene (PIB) in S6

base mineral oil using a cone-and-plate rheometer geometry of Θ=1.011◦ and R=0.02 m,

where Θ and R denote the cone angle and the radius, respectively. Since we use the same

parameterizations for CEF and Giesekus fluids, we performed a least-square fitting for the

two-mode Giesekus fluid using the experimental data for six different concentrations: 0.05,

0.1, 0.18, 0.357, 0.5, and 0.76 wt% of PIB solution in a Newtonian mineral base oil (trade

name: S6 Newtonian viscosity standard, Cannon Instrument Company, ηs=9.624 mPa-s at

20◦C). Using fitted parameters, the cone-and-plate geometry is numerically modeled for both

CEF-Reynolds and Giesekus-3D solvers and simulated for the six fluid concentrations and

the entire angular velocity range that covers the shear rate range of obtained experimental

data.

The comparison of the raw torque T and the raw normal force (thrust) FN experimental

data (circles) to simulation results (dotted line: CEF-Reynolds, solid line: Giesekus-3D) is

shown in Fig. C.1. Good agreement is seen between the experiments and the simulations for

the cone-and-plate rheometer geometry with a steady shear condition.
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(a)

(b)

Figure C.1: Comparison of raw torque T and raw normal force FN data from experiments using
a cone-and-plate rheometer geometry and simulations using CEF-Reynolds and Giesekus-3D
solvers. (a) Torque T . (b) Normal force FN .
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C.2 Solver Parameter Sensitivity Analysis

We analyzed ranges of solutions affected by mechanical and fluid parameter uncertainties for

our numerical solvers using a differential sensitivity analysis method. Mechanical parameters

include geometrical and operating parameters, including the radius of the parallel discs,

minimum controlled gap height between discs, and angular velocity of the rotating disc. Fluid

parameters include operating temperature, which affects solvent viscosity. Design variables

in the fluid parameters, such as polymeric viscosity, relaxation time, and the mobility factor

of design target viscoelastic fluid, are not assessed here because they are design targets rather

than measured properties in this study.

The radius of the discs (Ro) as well as the textured disc can be very precisely manufactured

for the tribo-rheometric experiments. However, to see the effect of radius changes, we set

a deviation of ±50 µm. The nominal gap height (hmin), which serves as a minimum gap

height between the discs in this study, can affect the apparent viscosity of the system directly.

According to Schuh and Ewoldt [30], the maximum gap offset between true and apparent gap

values is 19 µm during the gap zeroing procedure in the experiment. Thus, we set a deviation

of +19 µm for the minimum gap height. The measured value of the solvent viscosity (ηs) is

9.624 mPa-s, which is less than 5% lower than the specification value of 10 mPa-s; thus, we

set a deviation of ±5% for the solvent viscosity. The measured density of the solvent (ρs) is

873.4 kg/m3, which is 0.5% lower than the specification value of 878 kg/m3; thus, we set a

deviation of ±1% for the solvent density that covers this difference with enough margin.

Tables C.1 and C.2 show changes in the objective functions (f1: power input, f2: normal

force) when each parameter variable deviates specified amount for CEF-Reynolds and

Giesekus-3D solvers respectively. We performed this differential sensitivity analysis on 6

select designs for each case; thus, the deviations in the objective functions have mean values

and standard deviation values (with ± sign) in their table entries.
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Table C.1: Result of differential sensitivity analysis for the CEF-Reynolds solver parameters

variable deviation deviations in f1 [%] deviations in f2 [%]

Ro = 20 mm
−50 µm −0.941±0.031 −0.924±0.035
+50 µm +0.948±0.032 +0.931±0.035

hmin = 269 µm +19 µm −4.164±0.492 −11.398±0.390

Ω = 10 rad/s
−1% −1.772±0.125 −0.927±0.159
+1% +1.785±0.129 +0.928±0.160

ηs = 9.624 mPa-s
−5% −2.481±1.619 −2.024±1.368
+5% +2.481±1.619 +2.023±1.368

ρs = 873.4 kg/m3 −1% +7.6e-6±5.8e-6 −0.048±0.083
+1% −7.6e-6±5.8e-6 +0.048±0.083

Table C.2: Result of differential sensitivity analysis for the Giesekus-3D solver parameters

variable deviation deviations in f1 [%] deviations in f2 [%]

Ro = 20 mm
−50 µm −0.860±0.265 −0.458±1.314
+50 µm +0.978±0.018 +1.005±0.020

hmin = 269 µm +19 µm −4.599±0.855 −10.100±1.574

Ω = 10 rad/s
−1% −1.787±0.270 −0.501±1.329
+1% +1.912±0.059 +1.047±0.077

ηs = 9.624 mPa-s
−5% −2.770±1.662 −1.869±0.887
+5% +2.570±1.684 +2.479±2.178

ρs = 873.4 kg/m3 −1% +0.106±0.271 +0.442±1.343
+1% −0.052±0.128 +0.316±0.474
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Appendix D

Support Vector Domain Description

We constructed the Gaussian kernel-based support vector domain description (SVDD) [96]

using a maximization problem given as

maximize
0≤β≤C

W
(
β
)

=
∑
i

βiKG (xi, xi)−
∑
i,j

βiβjKG

(
xi, xj

)
(D.1)

where C is a vector of constant C, which is a parameter value that constrains the Lagrange

multiplier β and is used to detect the outliers of the described domain. Using the Gaussian

kernel function (or any other kernel function that satisfies Mercer’s theorem [208]) allows

the implicit mapping of objects x to some feature space, which allows the encapsulating

hypersphere to tightly describe the region of the clouds of objects. The Gaussian kernel is

defined as

KG

(
xi, xj

)
= exp

(
−q
∣∣∣∣xi − xj∣∣∣∣2) , (D.2)

where q ≥ 0 is the width parameter, which quantifies how tightly-encapsulate the boundaries

of the point clouds will be. Testing if any arbitrary point z is inside the encapsulated domain

can be performed using the computation of distance from the center of the featured space

constructed from Eq. D.1 given as

R2 (z) = KG (z, z)− 2
∑
i

βiKG (z, xi) +
∑
i,j

βiβjKG

(
xi, xj

)
(D.3)
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and the arbitrary point z is inside the described boundary if

R2 (x)−R2 (z) = KG (x, x)−KG (z, z) + 2
∑
i

βi (KG (z, xi)−KG (xi, xi)) ≥ 0 (D.4)

where x is a bounding point, which is called a support vector.

When training the constraint boundaries using the SVDD technique, getting the exact

‘radius’ of the boundary encapsulating training points can be practically obtained by the

maximum value of the radii of all the training points. This radius value exactly confine all

the training points with zero tolerance.

(a) (b)

Figure D.1: A test case showing how the SVDD algorithm describes boundaries of the data
point clouds. (a) Artificial data set in 2D space. (b) The support vectors (data points with
red circles) and the domain encapsulating the data point clouds (black curved lines).

Fig. D.1 shows a test case with an artificial data set in two-dimensional space. A detailed

description of the SVDD derivation can be found in Tax and Duin [96], and more test cases

using the SVDD based on the Gaussian kernel are demonstrated in Malak and Paredis [97].
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[152] A. F. Rodŕıguez, L. de Santiago Rodrigo, E. L. Guillén, J. M. R. Ascariz, J. M. M.
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