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Surface textures decrease friction in lubricated sliding contact with Newtonian lubri-
cants. When using a non-Newtonian lubricant, the friction reduction is enhanced. In
this study, we present a simultaneous design of the shape of a textured surface and the
non-Newtonian viscometric functions using a multiobjective surrogate-based optimization
technique. We model the flow of the non-Newtonian fluids between a flat plate and a texture
surface using two different models: the Criminale-Ericksen-Filbey (CEF) model (which can
be used to derive a modified Reynolds equation), and a multi-mode Giesekus model (which
is used with the full 3-D Cauchy Momentum equations). We demonstrate the efficiency of
our previously developed multiobjective adaptive surrogate modeling-based optimization
(MO-ASMO) method, and provide insights into co-designing of the lubricant and textured
surface, and how these results can be physically realized.

I. Introduction

Surface textures decrease friction in lubricated sliding contact with Newtonian fluids.1–3 We have previ-
ously shown that this friction reduction can be enhanced using more general surface topographies.4 For that
study, we developed surface parameterization techniques for generating an arbitrary texture profile subject
to a limitation on the local slope (manufacturability constraint). We modeled the flow of an incompressible
Newtonian fluid over the textured surfaces using the Reynolds equation,5 and used this model to determine
the optimal texture profile for minimizing frictional loss (shear stress) and maximizing load capacity (normal
force).

We have also experimentally studied friction reduction with surface textures and viscoelastic non-Newtonian
lubricants.6,7 Viscoelastic non-Newtonian lubricants can decrease shear stress due to shear thinning and in-
crease the load capacity due to normal stress differences. These additional fluid properties, when coupled
with surface textures, result in greater friction reduction than when using surface textures or viscoelastic
non-Newtonian lubricants independently.

Based on these observations, we extend our design study to include viscoelastic effects in friction re-
duction. We include viscoelastic effects through two different models: the Criminale-Ericksen-Filbey (CEF)
model, and a multi-mode Giesekus model. The flow fields with both models are three dimensional; however,
the CEF model is less computationally expensive because it can be used to derive a modified Reynolds equa-
tion,8 whereas the multi-mode Giesekus model must be used with the full 3-D Cauchy Momentum equations.
Combinations of the fluid models and governing equations are given in Table 1, and are discussed in more
detail in Sect. II.A and III.A. We compare the results with the viscoelastic models to a Newtonian fluid
reference case.

Figure 1 describes the design problem presented. We have adapted our previous design optimization
strategy4,5 to design both surface texture topography and non-Newtonian viscometric functions. Figure 1(a)
shows the setup used previously in experiments;6 the fluid is confined between a flat plate that rotates at a
constant angular velocity and a stationary textured surface. A sector shown in Figs. 1(b)-(c) is an example
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Table 1. Fluid models used for design in this study and corresponding solver governing equations.

Case no. Fluid model Governing equation Dimension

1 Criminale-Ericksen-Filbey (CEF) model Reynolds equation 2D (r, θ)

2 Multi-mode Giesekus model Cauchy momentum equation 3D (r, θ, z)

0 Newtonian fluid Cauchy momentum equation 3D (r, θ, z)

r−z

θ

M

FN

fixed,
textured
surface

gap controlled
rotating disc

(a) Schematic diagram (b) Simulated periodic sector (c) Sector design (d) Full disc design
Figure 1. A lubricated periodic surface texture design problem in a rotational tribo-rheometer setting.

design of the surface texture height profiles as a function of r and θ. Figure 1(d) shows an example of a
fully-textured disc using 10 periodic sectors.

As we extend our study to include nonlinear viscoelastic models, and move from 2-D to 3-D, the com-
putational cost associated with the design problem increases significantly. In our previous study, where we
modeled the fluid flow with the Reynolds equation, the computational cost of the optimization was reduced
by using a coarse design mesh that was mapped onto a finer analysis mesh.4 The computational cost of
the optimization can also be reduced by linearizing the Reynolds equation (with respect to the design vari-
ables) and iteratively solving using a sequential linear programming (SLP) algorithm.9 Here, we solve the
full nonlinear optimization problem using surrogate modeling. We have developed a multiobjective adap-
tive surrogate modeling-based optimization (MO-ASMO) strategy10 that uses efficient sampling strategies
to explore a constrained design space and search for Pareto-optimal solutions. This algorithm is developed
specifically for problems with narrow or geometrically complex feasible design domains. We have imposed
a local slope constraint on the gap height profile (manufacturability constraint), and have constrained the
viscometric functions to represent realizable materials. It is demonstrated that the MO-ASMO algorithm is
beneficial by reducing the overall computational cost of the combined fluid and texture design optimization
problem.

II. Formulation

II.A. Non-Newtonian Fluid Models

Non-Newtonian fluids show different rheological behavior than Newtonian fluids; the behaviors most often
studied are shear thinning, viscoelasticity, generation of normal stresses in shear, and extensional thickening.
These rheological behaviors can be described using different constitutive models. Here, we model the non-
Newtonian fluids using two different models: the Criminale-Ericksen-Filbey (CEF) model and the multi-mode
Giesekus model.

II.A.1. Criminale-Ericksen-Filbey (CEF) Model

The Criminale-Ericksen-Filbey (CEF) model11,12 is a constitutive model for the stress tensor τ that contains
terms for the shear-rate dependent viscosity and the first and second normal stress differences, and is given
as:

τ = η (γ̇)γ
(1)
− 1

2
Ψ1 (γ̇)γ

(2)
+ Ψ2 (γ̇)

(
γ
(1)
· γ

(1)

)
, (1)
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Table 2. Parameters for each fluid model used in design studies.

Case no. Nφ nr nθ nz Ω [rad/s] ηs [Pa·s] ρs [kg/m3] nmode θincl [◦]

0 10 6 6 4 10.0 9.624× 10−3 873.4 0 60.0

1 10 6 6 - 10.0 9.624× 10−3 873.4 2 60.0

2 10 6 6 4 10.0 9.624× 10−3 873.4 2 60.0

where the upper convective time derivative13 of the shear rate γ̇ is defined as:

γ
(1)

= γ̇, and γ
(n+1)

=
∂γ

(n)

∂t
+ (u · ∇)γ

(n)
−
(

(∇u)
T · γ

(n)
+ γ

(n)
· (∇u)

T

)
. (2)

The viscometric functions in this constitutive model, η, Ψ1, and Ψ2, are functions of the shear rate γ̇ where

γ̇ =
√

1
2 γ̇ : γ̇. The first term in Eqn. (1) models a generalized Newtonian fluid, and the remaining terms

model the behavior of elastic effects from normal stress differences.

II.A.2. Multi-Mode Giesekus Model

The CEF model cannot predict transient effects on the shear stress tensor τ . To capture the contributions
of possible transient effects on the friction reduction, we need to use a more general constitutive equation
that includes time derivatives of the shear stress. Here, we choose a multi-mode Giesekus model to simulate
our polymeric stresses, given as:

λi

(
∂τ

pi

∂t
+ (u · ∇) τ

pi
−
[
(∇u)

T · τ
pi

+ τ
pi
· (∇u)

])
+ τ

pi
+
λiαi
ηpi

(
τ
pi
· τ

pi

)
= ηpi γ̇, (3)

where λi is the relaxation time, ηpi is the polymeric viscosity, and αi is the mobility factor of the ith-mode.
The contributions from each mode are assumed to be additive such that:

τ
p

=

nmode∑
i=1

τ
pi

. (4)

II.A.3. Parameters

Fluid properties, model parameters, computational mesh resolutions, operating conditions, and design con-
straint parameters for all the cases are listed in Table 2. Number of periodic sectors to construct a full disc
is denoted by Nφ. Number of mesh nodes for each r-, θ-, and z-direction corresponds to nr, nθ, and nz. Ω
denotes the angular velocity of the flat plate as shown in Figure 1(a); ηs and ρs denote the solvent viscosity
and density. nmode denotes the number of modes for the Giesekus model, and θincl denotes the maximum
angle for the texture inclination explained in Sect. II.B.

II.B. Design Problem Formulation

The design problem considered here is simultaneously minimizing the input power to the rotating flat plate
and maximizing the load-supporting normal force, while constraining the maximum texture inclination angle.
This problem is formulated as a constrained nonlinear optimization problem in negative null form:

minimize
xlb≤x≤xub

f (x) = [P, −FN ] (5a)

subject to ggeom,incl (x) =

[{∣∣∣∣hij − h(i−1)j

ri − r(i−1)

∣∣∣∣ :
i = 2, · · · , nr
j = 1, · · · , nθ

}
,{∣∣∣∣ hij − hi(j−1)

riθj − riθ(j−1)

∣∣∣∣ :
i = 1, · · · , nr
j = 2, · · · , nθ

}]
− θincl ≤ 0 (5b)
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ggeom,lowpt (x) = {−h1nr + hinr : i = 2, · · · , nθ} ≤ 0 (5c)

hgeom,bc (x) = {hi1 − hinθ : i = 1, · · · , nr} = 0, (5d)

where:

P = MΩ (6a)

FN = Nφ

∫ ϕ/2

−ϕ/2

∫ Ro

Ri

(p|z=0 − τzz|z=0) rdrdθ (6b)

M = Nφ

∫ ϕ/2

−ϕ/2

∫ Ro

Ri

(rτθz|z=0) rdrdθ (6c)

pij , τ ij ← flow-solver (x) , (6d)

and θincl is the maximum allowable local inclination angle between neighboring control points of the La-
grange polynomial interpolation over the texture geometry. The design objectives are to minimize the power
input P = MΩ and to maximize the normal force FN simultaneously. Simultaneous optimization of the
two objective functions (multiobjective optimization) results in a set of Pareto-optimal (non-dominated)
solutions. The design variable vector x is comprised of both surface height values at mesh nodes, and fluid
model parameters:

x = [{hij : i = 1, · · · , nr, j = 1, · · · , nθ} , {λk, αk, ηpk : k = 1, · · · , nmode}] , (7)

assuming we have a given fluid viscosity η, used as η (γ̇1 ≈ 0) = η and ηs = η for the Giesekus model. The
viscometric functions for the CEF model can be described using analytical solutions for those values from
other models; for example, the Giesekus model in steady simple shear flow has analytical expressions for
η and Ψ1 that depends on the same parameters we use for the full Giesekus model solver (ηp, λ, and α).
This treatment reduces the number of design variables significantly and allows us to use the same design
variable set for the two fluid models. A manufacturability constraint applied in our previous study4 is
also implemented via the first vector-valued inequality constraint function ggeom(·). The inclination angle
between the surface mesh nodes is limited to a predefined maximum value. Also, material functions used in
the non-Newtonian fluid models are constrained to disallow certain shapes that are not physically realizable.

III. Methodology

III.A. Solution Procedures for Fluid Flow

III.A.1. Reynolds Equation With CEF Model

Previously we have developed code for solving the flow of an incompressible Newtonian fluid over general
surface textures using the Reynolds equation,5 and have used that code for optimization of textured surfaces.4

A previous study8 showed that viscoelasticity can be included in the thin film governing equations using the
CEF model. Here we derive a modified Reynolds equation with the CEF model for our design problem by
applying the following assumptions: i) the gap height is small compared to the radius of the textured disk
(h (r, θ) /R << 1), ii) shear rate (γ̇ (r, θ) = rΩ/h (r, θ)) is independent of z, iii) ∃ no second normal stress
difference coefficient (Ψ2 = 0), resulting in pressure that does not vary in the z direction (∂p/∂z = 0), and
iv) zero gradients in z direction are assumed for the other viscometric functions (∂η/∂z = 0, ∂Ψ1/∂z = 0).
Splitting the pressure and velocity fields into p = p0+p1 and u = u0+u1, and applying appropriate Dirichlet
boundary conditions for the velocity fields results in two equations governing the flow of a CEF fluid over
general surface textures; an equation similar to the steady state Reynolds equation given as

1

r

∂

∂r

(
rh3

12η

∂p0
∂r

)
+

1

r

∂

∂θ

(
h3

12ηr

∂p0
∂θ

)
=

1

r

∂

∂θ

(
rΩh

2

)
, (8)

which includes shear thinning, and a modified Reynolds equation (where the right hand side depends on the
local Reynolds number and local relationship between elasticity and viscosity) given as

1

r

∂

∂r

(
rh3

12η

∂p1
∂r

)
+

1

r

∂

∂θ

(
h3

12ηr

∂p1
∂θ

)
=

1

r

∂

∂r
(rGr) +

1

r

∂

∂θ
(Gθ) (9)
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where

Gr =
rΩh

40

(
ρΩh2

η

)
Br +

rΩh

12

(
Ψ1Ω

η

)
Ar (10a)

Br = 1− 1

3

(
1

ηΩ

∂p0
∂θ

(
h

r

)2
)

+
1

28

(
1

ηΩ

∂p0
∂θ

(
h

r

)2
)2

(10b)

Ar = −1− 1

20

(
1

ηΩ

∂p0
∂θ

(
h

r

)2
)2

+
1

20

(
1

ηΩ
r
∂p0
∂r

(
h

r

)2
)2

(10c)

Gθ =
rΩh

240

(
ρΩh2

η

)
Bθ +

rΩh

120

(
Ψ1Ω

η

)
Aθ (10d)

Bθ =

(
1

ηΩ
r
∂p0
∂r

(
h

r

)2
)
− 3

14

(
1

(ηΩ)
2 r
∂p0
∂r

∂p0
∂θ

(
h

r

)4
)

(10e)

Aθ =

(
1

(ηΩ)
2 r
∂p0
∂r

∂p0
∂θ

(
h

r

)4
)

. (10f)

We solve these equations using a Galerkin pseudospectral method for a periodic sector with p0|r=R0
=

p1|r=R0
= 0, ∂p0/∂r|r=Ri = ∂p1/∂r|r=Ri = 0, and periodic boundary conditions in the θ direction. The

Dirichlet boundary condition p|r=R0
= 0 is used to match results obtained by Macosko14 for flow between

parallel disks.

III.A.2. Cauchy Momentum Equation Solver With Multi-Mode Giesekus Model

The Cauchy momentum equation is written in tensorial form as:

∂u

∂t
+ (u · ∇)u = −1

ρ
∇p+

ηs
ρ
∇2u+

1

ρ
∇ · τ

p
, (11)

where ρ is the fluid density, ηs is the solvent viscosity, and τ
p

is the polymeric contribution to the shear

stress. The contribution of the solvent has been pulled out of the stress tensor to help with stability.15

We assume that the flow is incompressible (∇ · u = 0), and that the solvent and polymeric stresses add to
produce the total shear stress:

τ = τ
s

+ τ
p
, τ

s
= ηsγ̇. (12)

The above equations (conservation of momentum and incompressibility) provide four equations with ten
unknowns; therefore, a constitutive equation must be used for τ

p
to solve the fluid flow system. As stated

above, we are using the multi-mode Giesekus model given in Eqn. 3 with nmode = 2.
We solve the transient governing equations in cylindrical coordinates to steady state. The equations are

solved on a periodic sector of a disk where z ∈ [−h(r, θ), 0]; this is similar to our previous solution method with
the Reynolds equation.4,5 The equations are discretized in space using a Galerkin pseudospectral method
(where we have mapped our 3-D periodic sector onto the [−1, 1] cube using an invertible mapping,16,17 where
it was assumed that the gradient of the gap height profile h (r, θ) exists everywhere in the computational
domain), and are discretized in time using a third-order Adams Bashforth time stepper with third-order
extrapolation for the nonlinear terms. A velocity splitting technique is used for solving the pressure Poisson
equation at each time step, and the diffusion terms are treated implicitly to aid stability.15

The transient Cauchy momentum equations are solved with maximum CFL number of 0.8, where local
CFL condition is defined as C = u∆t/∆x. Each fluid parameter has its own bound constrained by physical
or numerical limitations. For example, the mobility factor αi is bounded between 0.01 and 0.50. When the αi
decreased smaller than 0.01, increased Weissenberg number causes numerical instability and the computation
tends to break down.18
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III.B. Design Procedures

III.B.1. Texture Design Representation

We chose a pseudospectral method for both fluid models given in Sect. III.A.1 and III.A.2, which assumes the
computational grid to be approximated by Lagrange polynomials ofND-th order for each geometric dimension
D.19 The texture design given to the flow simulation is represented by the gap height hij for i, j = 1, · · · , nr,
and the solution procedure of the pseudospectral method assumes that the entire computational domain is
continuous and smooth in Lagrange polynomial form. Thus, we could get very accurate fluid flow solution
even with a very small number of grid points over each direction. Solutions for the design problem will also
be smooth and continuous in the form of Lagrange polynomial. By maintaining the same mesh for the design
representation and the simulation domain representation, we can get very accurate design solutions without
requiring a large number of design variables due to the characteristics of the interpolating polynomials used
in the pseudospectral method.

III.B.2. Multiobjective Adaptive Surrogate Modeling-Based Optimization (MO-ASMO)

Figure 2. Flow chart illustrating the
MO-ASMO framework with direct sampling
method.10,20

The multiobjective adaptive surrogate modeling-based opti-
mization (MO-ASMO)10 is a surrogate-based optimization
framework that can handle multiple objective functions, tens
or hundreds of design variables, and multiple linear and nonlin-
ear constraints. Figure 2 briefly illustrates a general structure of
this type of algorithm (direct sampling20). We have developed
this method primarily for solving problems with complicated
constraints that result in narrow or otherwise difficult to nav-
igate feasible domains. It avoids infeasible samples to reduce
inefficient use of high-fidelity simulations. The method aims to
balance choosing samples that help improve surrogate model
accuracy in the the vicinity of the Pareto-optimal solution (a
hypersurface in the design space), with choosing samples that
aid exploration to improve the probability of finding global optima. The problem considered here is well-
matched for this MO-ASMO method as it involves a large number of constraints that interrelate multiple
design variables, and a computationally expensive simulation. Readers are referred to Ref. 10 for a detailed
description of this method, including sampling and validation, as well as openly-available source code.

IV. Results and Discussion

IV.A. Case 1: CEF Model Case Result

Solutions of design problem case 1 (CEF model with Reynolds equation) are illustrated in the objective
function space in Fig. 3. Since the objective functions are i) to minimize the power input and ii) to maximize
the normal force, we desire points in this space to be close to the top-left corner. Optimal solutions (in the
form of a Pareto frontier) are marked with colored circles, while all the explored designs are marked with
black and gray-scale dots. Design points marked as black or darker gray dominate design points marked
as lighter gray. Points having the same gray-scale intensity means they have the same rank according to a
non-dominated sorting strategy.21 Optimal solutions have a range of input power values from 4.31 × 10−4

to 3.56× 10−3 [W], and a range of normal force values from 6.16× 10−4 to 1.50× 10−1 [N]. The labels (a)
through (f) that identify specific marked points in Fig. 3 correspond to the texture and fluid designs given
in Fig. 4(a)-(f).

Design result (a) for case 1 (refer to point (a) in Figs. 3 and 4(a)) is an anchor point of the Pareto set in
the objective function space; it has the minimum power value over all feasible designs. An anchor point is a
non-dominated point with one of the objective functions optimized, with all other objective functions ignored.
Here point (a) results when power is minimized and normal force is not considered. This minimum-power
design exhibits a relatively flat texture surface with a small amount of asymmetry, and does not generate
much normal force (4.31× 10−4 [N]). This design solution includes no non-Newtonian fluid properties, since
the polymer viscosity values have converged to zero for all modes.

Design result (f) (refer to point (f) in Figs. 3 and 4(f)) is the other anchor point, which has a maximum
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normal force without consideration of power input. Unlike the former anchor point, this design has strong
asymmetry with distinct elevation changes in the texture to form a spiral blade-like shape. As explained
in our previous study, this spiral texture design directs the fluid pressure radially inward by acting as a
converging channel, eventually generating the positive net normal force due to increased pressure near the
disc center.4 Also, this design solution includes non-Newtonian fluid properties with high polymer viscosity
values for both modes (ηp1 and ηp2). These results are congruent with earlier studies based on Newtonian
fluids where it was observed that: i) a deeper surface reduces frictional loss, ii) symmetric surfaces do not
generate any normal force due to geometric properties, and iii) stronger asymmetry generates larger normal
forces.4,5

Figure 3. Explored designs and optimal solutions (non-dominated designs) for the CEF model case in the objective
function space.

LB ≤ {var} ≤ UB : 0 ≤ ηpi ≤ (5/2)ηs , 1.0× 10−5 ≤ λi ≤ 1.0× 10−2 , 0.01 ≤ αi ≤ 0.5

(a) (b) (c) (d) (e) (f)
Figure 4. Sample textured sector and fluid designs in the Pareto set from the CEF model case.

Other designs on the Pareto frontier between these two anchor points (refer to points (b)-(e) in Figs. 3 and
4(b)-(e)) have consistent trends. Specifically, we observe that: i) the general shape of the surface texture
designs does not change significantly, but steeper inclines in the texture are required to generate higher
normal forces, and ii) an increased polymer viscosity and a decreased nonlinearity (anisotropy described by
the mobility factor) help obtain higher normal forces. These results show that the nonlinearity mainly plays
a role when we optimize both objective functions simultaneously. An increased polymer viscosity tends to
help increase load capacity, and increased nonlinearity helps reduce frictional losses. It should be noted that
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these responses are non-monotonic and have optimum values for achieving a certain balance between the
two objectives.

IV.B. Case 2: Multi-Mode Giesekus Model Case Result

Solutions of the design problem case 2 (multi-mode Giesekus model with transient Cauchy momentum
equation) are illustrated in the objective function space in Fig. 5. As with the CEF model (Fig. 3), the
direction of desired performance is toward the top-left corner, and the labeling strategy is kept consistent.
Optimal solutions have a range of power input from 3.77 × 10−4 to 2.56 × 10−3 [W], and a normal force
range of 2.11× 10−4 to 9.01× 10−2 [N]. The labels (a) through (f) indicate specific non-dominated points in
Fig. 5 that correspond to the texture and fluid designs shown in Fig. 6(a)-(f).

Figure 5. Explored designs and optimal solutions (non-dominated designs) for the multi-mode Giesekus model case in
the objective function space.

LB ≤ {var} ≤ UB : 0 ≤ ηpi ≤ (5/2)ηs , 1.0× 10−5 ≤ λi ≤ 1.0× 10−2 , 0.01 ≤ αi ≤ 0.5

(a) (b) (c) (d) (e) (f)
Figure 6. Sample textured sector and fluid designs in the Pareto set from the multi-mode Giesekus model case.

Design (a) of case 2 (refer to point (a) in Figs. 5 and 6(a)) is the anchor point with minimum power
input. This design shows a relatively flat texture surface with a small amount of asymmetry and Newtonian
fluid properties, as was observed in case 1. The maximum normal force anchor point is design point (f) in
Fig. 5 (also in Fig. 6(f)). This design has the most distinct elevation changes in the texture, and, similar to
the previous case, forms a spiral blade-like shape.
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Other designs on the Pareto frontier between these two anchor points (refer to points (b)-(e) in Fig. 5 and
Fig. 6(b)-(e)) also exhibit consistent trends: i) the surface texture shapes do not change significantly, but
larger elevation changes are needed to acquire higher normal forces, and ii) an increased polymer viscosity
is associated with higher normal forces, and iii) the nonlinearity (mobility factor) is maintained with low
(but non-zero) values for entire range of designs. Thus, for case 2, we can observe an increase in the normal
force with a simultaneous increase in the power input as polymer viscosity values in modes 1 and 2 increase
(from design (b) through (f)). However, all the optimal solutions converged to low mobility factor values,
suggesting that shear thinning is not desirable. Also, the optimal textures from case 2 are in general deeper
than those for case 1.

IV.C. Case 0: Newtonian Fluid Model Case Result

An additional study is performed here using a Newtonian fluid model with transient Cauchy momentum
equation to provide a reference solution (case 0). Solutions of this case are shown in Fig. 7. Optimal
solutions have a range of power input from 3.43 × 10−4 to 6.73 × 10−4 [W], and a range of normal force
values from 1.45 × 10−4 to 2.51 × 10−2 [N]. The labels (a) through (f) indicating specific marked points in
Fig. 7 correspond to the texture and fluid designs given in Fig. 8(a)-(f).

Figure 7. Explored designs and optimal solutions (non-dominated designs) for the Newtonian fluid model case in the
objective function space.

(a) (b) (c) (d) (e) (f)
Figure 8. Sample textured sector designs in the Pareto set from the Newtonian fluid model case.
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Similar to the results obtained from the non-Newtonian fluid studies, we see similar trends in the shape
of the surface textures. An anchor point with a minimum power input (shown as design (a) of case 0) has a
deep and relatively planar textured surface. The maximum normal force anchor point, shown as design (f),
has a sharp and distinct asymmetric spiral blade-like texture shape, which directs the fluid pressure radially
inward to generate a positive net normal force.

Other designs on the Pareto frontier between these two anchor points (refer points (b)-(e) in Fig. 7 and
Fig. 8(b)-(e)) have a consistent trend; unlike the other two non-Newtonian fluid cases, the texture designs
are notably different to each other. The optimal designs on the Pareto frontier in this case show how changes
in texture design purely affect changes in generated normal force values since all the designs have the same
Newtonian fluid properties. Comparatively sudden elevation changes in the texture are observed for entire
design points that generate normal forces (specifically see points (b)-(f)).

IV.D. Comparisons and Discussion

IV.D.1. Pareto Set Comparison

Figure 9 shows Pareto sets for three design studies simultaneously, including CEF (case 1), Giesekus (case 2),
and Newtonian fluid model (case 0) studies. Colored dots represent Pareto-optimal solutions (design points)
in the objective function space, while colored circles represent the corresponding utopia points for each of
the three design studies.

Figure 9. A comparison of the optimal solutions (Pareto set) of CEF, Giesekus, and Newtonian fluid models in the
objective function space.

The study based on the Newtonian fluid model serves as a reference, illustrating how much normal
force can be generated through improved texture design alone without tailoring non-Newtonian effects. For
Newtonian fluids, Pareto-optimal designs span only a small range of power input levels (from 3.43 × 10−4

to 6.73× 10−4 [W]). The maximum possible normal force generated without aid from viscoelastic effects is
2.51× 10−2 [N].

When parameters that define fluid properties are added as design variables, the maximum possible normal
force generated is increased by a factor of six. The CEF model case exhibits a maximum possible normal force
of 1.50 × 10−1 [N], with a corresponding power input of 3.56 × 10−3 [W]. Using the multi-mode Giesekus
model, we can obtain a maximum normal force of 9.01 × 10−2 [N], with a corresponding power input of
2.56× 10−3 [W]. Although we used the same parameterizations for designing fluids in both non-Newtonian
fluid cases, we see a significant difference in normal force generating capability. Design based on more
simplified fluid simulations (i.e., modified Reynolds equation using a CEF fluid model) could explore designs
that generate higher normal force values.
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IV.D.2. Model Comparison

Based on the above results, the two fundamental problem types are: i) simultaneous design of texture and
fluid properties, and ii) design of texture-only with fixed fluid properties. While the simultaneous texture
and fluid design problem was solved using two distinct numerical fluid simulation models, they correspond
to the same physical design problem. Both cases involve using a viscoelastic fluid (polymeric solution) as the
lubricant, designing the fluid properties, and designing the texture shape. The only difference between these
two cases is how behavior was predicted, and simplifying assumptions made. We highlight this point to clarify
that the decision between methods can instead be made based on the following criteria: i) computational
efficiency, ii) prediction accuracy, iii) range of numerical limits, and iv) range of types of fluid behaviors that
the model can predict. The models are compared here along these dimensions.

First, the modified Reynolds equation with the CEF model has a very efficient computational structure;
the entire optimization using the MO-ASMO algorithm took only 29 minutes using a dual Xeon X5650
workstation with 24-cores. The steady state solution can be obtained directly without using a time marching
transient solution procedure. Also, the modified Reynolds equation can predict the pressure and stress of the
flow field efficiently within assumptions made during derivation. Since the CEF model can include shear-
rate dependent viscosity and normal stress differences in calculating the velocity and pressure fields, the
nonlinear viscoelasticity observed in our polymeric lubricant can be predicted well. However, because of the
assumptions and limitations underlying the Reynolds equation (described in Refs.4,5), prediction accuracy
may be poor when certain flow conditions are present, such as recirculation or flow with non-trivial inertial
effects. By looking at the solution, however, the case with the CEF model provides the greatest freedom in
design exploration; it produces the highest normal force, although this model does have certain limitations.
Also, within the design ranges of the other models (power input up to 2.5 [W] and normal force up to 0.1
[N]), this model could provide a mostly overlapping Pareto frontier when comparing to the Pareto frontiers
produced using the other models.

Second, the Cauchy momentum equation with a multi-mode Giesekus model is the most computationally
expensive choice, but it can predict the fluid flow very accurately, including inertial effects, recirculation,
and other 3D effects. The Giesekus model can also include shear-rate dependent viscosity and normal stress
difference effects on the velocity and pressure fields. Thus, this model is the most ideal for complex flow
phenomena with nonlinear viscoelasticity. However, due to numerical instability under certain conditions, a
particular set of input (shape and fluid) parameter values cannot be evaluated with this solver. Our MO-
ASMO algorithm can handle these “unable-to-get-result” points by utilizing feasible region management
functions based on a support vector domain description (SVDD) strategy. Thus, we improved efficiency
by avoiding training samples that were incompatible with the model. After addressing this issue, the MO-
ASMO algorithm produced improved solutions. However, even with efficient MO-ASMO algorithm, the
computation time for this optimization problem was significant (31 hours using the same machine). The
Pareto frontier for this case overlaps with the CEF model results, but it could not produce designs with high
normal force generation.

IV.D.3. Texture Shape Comparison

Sample texture shapes of full discs from our design solutions are compared in Fig. 10. Texture designs from
the CEF model case are shown in subfigures (a), (d), and (g); texture designs from the Giesekus model case
are shown in subfigures (b), (e), and (h); texture designs from the Newtonian fluid model case are shown
in subfigures (c) and (f). Sample textures given here are selected to compare the resulting optimal textures
between different fluid model cases.

Designs are arranged such that the normal forces generated by each design in a given row is similar. The
first row designs ((a), (b), and (c)) are the textures that generate normal forces on the order of 1 × 10−4

[N]. These surface texture designs are relatively flat with a limited amount of asymmetry. The second row
designs ((d), (e), and (f)) are the textures that generate normal forces on the order of 2 × 10−2 [N]. These
surface texture designs have very sharp and large elevation changes to create a spiral blade-like pattern as
discussed in Sect. IV.A to IV.C. For the Newtonian fluid model case, which relies on the texture to generate
a normal force, the resulting design ((f)) generates a normal force value close to the highest possible without
non-Newtonian fluid behavior. The third row ((g) and (h)) are the textures that generate normal forces on
the order of 1× 10−1 [N], and are the highest normal force values for each of the respective design problems.
Texture designs are not significantly different from the designs in the second row. This observation indicates
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CEF model case Giesekus model case Newtonian fluid model case

f1=4.31E-04, f2=6.16E-04 f1=3.77E-04, f2=2.11E-04 f1=3.43E-04, f2=1.45E-04

(a) texture of Fig. 4(a) (b) texture of Fig. 6(a) (c) texture of Fig. 8(a)

f1=8.69E-04, f2=3.01E-02 f1=6.66E-04, f2=1.99E-02 f1=6.00E-04, f2=2.10E-02

(d) texture of Fig. 4(b) (e) texture of Fig. 6(b) (f) texture of Fig. 8(e)

f1=3.56E-03, f2=1.50E-01 f1=2.56E-03, f2=9.01E-02

(g) texture of Fig. 4(f) (h) texture of Fig. 6(f)
Figure 10. Sample textured disc designs in the Pareto set from all three fluid model cases.

that normal forces higher than what was purely achievable through only texture design depends solely
on viscoelasticity. Further design studies using sequential design strategies (texture design optimization
followed by fluid design, or vice versa) rather than simultaneous may provide stronger evidence for the
effects of viscoelasticity on normal force generation.

As described in Sect. IV.D.2, each simultaneous texture and fluid design study (cases 1 and 2) used the
same design objectives and variables. In other words, they involve the same design formulation, but use
different numerical simulation approaches for prediction. Thus, unless two different solution sets provide the
exact same objective function values, one of these two set of solutions may dominate the other. However, it is
possible that multiple solutions exhibit with almost identical performance values. This issue is connected to
the question of which fluid model or fluid solver can predict the behavior more accurately. A cross-validation
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of one solution with different fluid models, as well as an experimental validation of the solution, is needed
and is a topic of ongoing work.

IV.D.4. A Plan for Experimentation

A comprehensive comparison between numerical simulation results of the optimized texture and fluid and
experimental results is planned. Preparation for the experimental measurement requires: i) fabrication of
textured discs using additive (e.g., stereolithography, SLA) or subtractive (micro-milling) manufacturing,
and ii) a fabrication of viscoelastic lubricants using a polyisobutylene (PIB) solution. These tasks remains
as future work. Observing that all the design solutions on the Pareto frontier have different fluid properties,
we will select carefully a set of sample designs to compare with simulation results.

V. Conclusion

In this study, we designed the non-Newtonian lubricant properties and surface texture simultaneously for
lubricated sliding contact using the MO-ASMO algorithm. The objectives of this design problem are: i) to
minimize power input to reduce frictional loss, and ii) to maximize normal force to enhance load supporting
capacity. We used two non-Newtonian fluid models—a modified Reynolds equation with the CEF model,
and a Cauchy momentum equation with a multi-mode Giesekus model—to simulate nonlinear viscoelasticity
in the flow field.

We obtained non-dominated optimal design solutions (i.e., Pareto sets), and compared a set of sample
texture and fluid design results. Trends in texture shapes agreed with trends from our previous studies, and
we also observed fluid parameter trends and how fluid design influences objective function values.

Our MO-ASMO algorithm was applied successfully to solve this simultaneous fluid and texture design
problem with two objectives. Specifically, for the design problem using the Giesekus model, we solved the
transient Cauchy momentum equations. A direct optimization (using either nonlinear programming (NLP)
algorithms or genetic algorithms) was impractical given our computational resources. MO-ASMO enables
solution without requiring access to exceptional high-performance computing resources. A specific challenge
arises when attempting to use general-purpose NLP algorithms due to Giesekus model stability properties.
Certain combinations of texture shape and fluid parameter values cause model divergence. An explicit and
precise description of the boundary between compatible and incompatible parameter values is not available,
making direct application of standard NLP solvers impractical. MO-ASMO mitigates these issues effectively
using an SVDD strategy for adaptively constructing an explicit boundary between regions with acceptable
input values and those that lead to divergence.

A topic of ongoing work is a comprehensive set of physical experiments to compare performance indices
(power input and normal force) for a carefully-selected set of optimal texture and fluid designs. Texture
fabrication, fluid fabrication, and experimental measurement are outside the scope of this article focused on
optimization studies, and are identified as future work.
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