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ABSTRACT
A novel multiobjective adaptive surrogate modeling-based opti-
mization (MO-ASMO) framework is proposed to utilize a mini-
mal number of training samples efficiently for sequential model
updates. All the sample points are enforced to be feasible,
and to provide coverage of sparsely explored sparse design re-
gions using a new optimization subproblem. The MO-ASMO
method only evaluates high-fidelity functions at feasible sample
points. During an exploitation sample phase, samples are se-
lected to enhance solution accuracy rather than the global ex-
ploration. Sampling tasks are especially challenging for mul-
tiobjective optimization; for an n-dimensional design space, a
strategy is required for generating model update sample points
near an (n− 1)-dimensional hypersurface corresponding to the
Pareto set in the design space. This is addressed here using a
force-directed layout algorithm, adapted from graph visualiza-
tion strategies, to distribute feasible sample points evenly near
the estimated Pareto set. Model validation samples are chosen
uniformly on the Pareto set hypersurface, and surrogate model
estimates at these points are compared to high-fidelity model re-
sponses. All high-fidelity model evaluations are stored for later
use to train an updated surrogate model. The MO-ASMO algo-
rithm, along with the set of new sampling strategies, are tested
using two mathematical and one realistic engineering problems.
The second mathematical test problems is specifically designed
to test the limits of this algorithm to cope with very narrow, non-
convex feasible domains. It involves oscillatory objective func-
tions, giving rise to a discontinuous set of Pareto-optimal solu-
tions. Also, the third test problem demonstrates that the MO-
ASMO algorithm can handle a practical engineering problem

with more than 10 design variables and black-box simulations.
The efficiency of the MO-ASMO algorithm is demonstrated by
comparing the result of two mathematical problems to the results
of the NSGA-II algorithm in terms of the number of high fidelity
function evaluations, and is shown to reduce total function eval-
uations by several orders of magnitude when converging to the
same Pareto sets.

1 NOMENCLATURE

Variables and Parameters
x Design variable dim Dimension
f Objective function value idx Index
lb Lower bound k Iteration number
ub Upper bound n Number
c Constraint function ε Error (L2-norm)
D Data storage i Array of indices
M Surrogate model i, j Loop index
s Displacement v Velocity

Subscripts
x In design space smp Sample
f In objective function space tmp Temporary
l Linear rem Remaining
nl Nonlinear ii Initial
k Iteration number pop GA Population
mi Maximum iteration hf High fidelity
cr Criteria v Validation
u Update er Exploration
st Stored et Exploitation
sc Scaled LH Latin Hypercube Sampling
P Pareto set ctr Centroid
p Predicted

Functions
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r←choose(i, j, ‘rand’) Choose [‘rand’,‘big’,‘small’] from i and j
xctr←cluster ctr(x,n) Get n cluster centroids from x using k-means

x←descale(x, lb,ub) Convert x from [0,1] to [lb,ub] space
d←dist(x1,x2) Compute distances between x1 and x2
i←get idx(a,b) Get indices of a in set b
f←hf func eval(x) High fidelity function evaluation

[x, f]←NSGA-II(M,x) NSGA-II [1], multiobjective optimizer
b← rand(dim) Get random numbers in [0,1] ∈ Rdim space
x← rand pop() Get random populations for GA [2]
x←scale(x, lb,ub) Convert x from [lb,ub] to [0,1] space
b←sign(a) if a(i)> 0, b(i) = 1, otherwise b(i) =−1
x←smp exploit

(
xP,p
)

Sampling for exploitation
x←smp explore() Sampling for exploration
x←smp lh(n,dim) Latin Hypercube Sampling
x←smp uniform(x) Uniformly sampling points
x←smp validate

(
xP,p, fP,p

)
Sampling for validation

B←sort(A, j, ‘asc’) Sort A in [‘asc’|‘dec’] order for column j
M←surr model constr(x, f) Surrogate model construction

f←surr model eval(x) Surrogate model evaluation
i←unique(i,A) Remove duplicated data from A(i)

2 INTRODUCTION

Many practical design problems in engineering and other fields
have multiple design objectives, which form multiobjective
decision-making problems [3]. Generally, some of these design
objectives conflict with each other and the decision problem,
therefore, involves a trade-off between objectives. For exam-
ple, system performance and cost are common competing objec-
tives [4, 5, 6], while different types of system performance met-
rics also can compete with each other, such as minimizing fric-
tion and maximizing load capacity for fluid power systems [7,8].
Thus, the solution of such a problem is generally expressed as a
set of non-dominated (Pareto-optimal) design alternatives. A de-
sign is called non-dominated if no objective function can be im-
proved without degrading any other objective functions [3, 7, 9].

Several Multiobjective Evolutionary Algorithms (MOEAs)
have been developed and demonstrated to be effective in find-
ing Pareto-optimal solutions [1, 10, 11]. MOEAs obtain a set of
multiple Pareto-optimal design solutions simultaneously in a sin-
gle optimization algorithm execution. Another type of algorithm
for solving multiobjective optimization problems is scalarization
[12, 13], examples of which include the weighted-sum method
[14], the ε-constraint method [15], and the Pascoletti-Serafini
method [16]. This type of algorithm converts a single multiob-
jective optimization problem into a set of single-objective op-
timization problems, each of which produces a Pareto-optimal
point. An important drawback of both MOEAs and scalarization
is the potential for a large required number of function evalu-
ations. This is particularly concerning for problems based on
high-fidelity simulations.

To mitigate the computational burden for solving high-
fidelity optimization problems, surrogate modeling (or metamod-
eling) is a well-established strategy [17, 18, 19]. A limited set of
design samples is evaluated using the high-fidelity model, and
an approximation model is constructed based on these sample

points. This approximation could be realized using one of sev-
eral strategies, such as polynomial response surfaces [20], krig-
ing (or Gaussian process regression) [21,17], support vector ma-
chines [22], or radial basis function methods [23]. Optimization
is then performed using the inexpensive surrogate model instead
of with the high-fidelity model. Surrogate models provide insight
into the design problems using a limited number of high-fidelity
function evaluations. Constructing a surrogate model that is ac-
curate across the entire design domain is computationally expen-
sive, and for optimization purposes is inefficient. The model only
needs to be accurate in the neighborhood of the solution. An im-
portant strategy for limiting high-fidelity evaluations is to begin
with a coarse initial sample, and then adaptively select new sam-
ple points to update the surrogate model [24, 25, 26, 27]. New
samples often are either chosen in regions near the predicted op-
timum, or in sparsely sampled regions to improve the probability
of finding a global optimum. Adaptive surrogate modeling strate-
gies can be classified based on updating sequence and other char-
acteristics. Surveys of surrogate modeling methods and strate-
gies for design optimization are presented in Refs. [28, 29, 30].

Managing constraints is challenging when utilizing surro-
gate model-based optimization. Eldred and Dunlavy [31] consid-
ered constraints only during the optimization phase; constraints
are not considered by the surrogate model. Hussein and Deb [32]
allowed infeasible training points, but used a convexifying term
involving a sum of constraint violations. These strategies, how-
ever, are less effective for problems where constraints are cou-
pled densely with design variables (e.g., a multidimensional ge-
ometric mesh with gradient limiter). In addition, many engi-
neering simulation models may fail when attempting to evaluate
infeasible design points. Methods should prevent high-fidelity
evaluation of infeasible points. This could be accomplished
by filtering, but in problems with narrow, non-convex feasible
domains this may require discarding a large portion of sample
points generated using conventional strategies (e.g., latin hyper-
cube sampling). Processing and filtering a large number of infea-
sible sample points to obtain a few feasible points may dominate
computational effort. Here we seek strategies that by nature gen-
erate only feasible sample points.

Another sampling challenge touched on above is efficient
sampling for updating surrogate models, balancing exploration
(global search) and exploitation (precise solution) of the design
space [33, 34, 35]. Previous studies aimed to achieve the fol-
lowing goals simultaneously: 1) finding a global solution, 2)
finding an accurate local solution, and 3) limiting the number
of high-fidelity simulations. Many efforts in adaptive surrogate
modeling have been successful in achieving these objectives for
single-objective problems. Extension to multiobjective optimiza-
tion, however, gives rise to new challenges that have not been
addressed thoroughly. For example, regarding the exploitation
objective, an accurate local solution requires that the surrogate
model is accurate in the neighborhood of the estimated Pareto set
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(often an (n−1) hypersurface in the design space), as opposed to
just being accurate in the neighborhood of the estimated optimal
design (a single design point). Quantifying this local accuracy
and validating the surrogate model is much more complicated
for multiobjective problems compared to single objective prob-
lems. This motivates new efficient sampling strategies for model
validation.

This article presents advancements of adaptive surrogate
modeling for multiobjective optimization that aim to reduce
the number of required simulations to obtain optimal solutions
(Pareto sets). These advancements aim to cope with chal-
lenging problem characteristics, such as tightly-constrained de-
sign spaces (small, complex feasible domains) and the need
to evaluate only feasible sample points. Contributions of this
study include: (1) a novel global sampling strategy for tightly-
constrained design spaces, and (2) a novel adaptive sampling
strategy. The proposed global sampling algorithm can gener-
ate globally distributed feasible training points. This advantage
is especially useful when the feasible design space is extremely
small relative to the full design space, which often makes stan-
dard sampling strategies impractical. In addition, the new adap-
tive sampling algorithm utilizes a novel force directed point lo-
cating strategy for generating sample points near the estimated
Pareto set. This approach is inspired by force directed layout
algorithms used for graph visualization [36].

3 METHOD

3.1 MO-ASMO approach

The proposed multiobjective adaptive surrogate modeling opti-
mization (MO-ASMO) method [37] solves multiobjective op-
timization problems on a constructed surrogate model, which
is updated iteratively using new training sample points. The
flowchart in Fig. 1 illustrates this method, which this can be
classified as a direct sampling approach using Wang and Shan’s
categorization strategy [28]. Initial training samples are gener-
ated, and function values are obtained for them using high fi-
delity function evaluation. Using all existing results of the high
fidelity model, a surrogate model is constructed, which is then
used with a multiobjective optimization algorithm to generate
an estimate of the Pareto set for the original full-fidelity prob-
lem. The framework is independent of multiobjective optimiza-

FIGURE 1: Flow chart of proposed MO-ASMO framework

tion algorithm choice. Any type of MOEAs (e.g., NSGA-II algo-
rithm [1]) or gradient-based multiobjective optimization strate-
gies (e.g., scalarization methods [12, 13]) can be used. Here we
used NSGA-II for our test problems, assuming that computa-
tional costs for the optimization using surrogate model is very
low compared to high-fidelity model evaluations. Even if many
thousands of function evaluations are required to obtain a good
Pareto set estimate based on the surrogate model, this compu-
tational expense is still a fraction of high-fidelity simulation ex-
pense. This framework is capable of handling a large number of
design variables, as well as more than two objective functions. To
avoid excessive memory consumption in these multidimensional
problems, we refrained from using full factorial type loops in the
algorithm.

3.2 MO-ASMO Algorithm

The MO-ASMO algorithm is presented in Alg. 1 as pseudo-
code, and illustrates how the data flow of training points and
model evaluations is managed. The first stage is a problem
initialization (Line 1). Variable dimensions, bounds, and con-
straints of the multiobjective optimization problem are defined
here. Equality and inequality constraints can be given in both lin-
ear
(
Ax≤ b, Aeqx = beq

)
and nonlinear

(
c(x)≤ 0, ceq (x) = 0

)
forms. After initializing, the first set of training samples are gen-
erated in the global design space (Line 2). The details of this
step are presented in Sec. 3.3, which involves a novel sampling
strategy for tightly-constrained design spaces.

The main loop of the iterative enhancement phase using
adaptive sampling is given in Lines 3-27. First, as stated in
Line 5, the script performs high fidelity function evaluations for
the given samples. For the first iteration, initial samples are
used as update samples to be evaluated (Line 2). In Lines 6-11,
these high fidelity results are combined with already stored high-
fidelity results from previous iterations, and a surrogate model is
constructed using all available high-fidelity results (Line 12).

Here NSGA-II is used as the multiobjective optimization
solver. Lines 13-18 show how the initial populations are pre-
pared for the optimization solver. The predicted Pareto set in
the previous iteration is used as the initial population. Also, the
set of stored high-fidelity results are sorted by objective func-
tion value, and are sampled uniformly (including anchor points).
These sampled points are also useful to help preserve the an-
chor points of existing data. During the first iteration, however,
the initial population is selected randomly as shown in Line 19.
After obtaining the surrogate model and initial populations, the
NSGA-II algorithm is called to solve the optimization problem
using the surrogate model as shown in Line 21.

After a Pareto set is obtained by the multiobjective optimiza-
tion solver, the solution must be checked to determine whether is
satisfies a specified level of accuracy. If it does, the algorithm
stops. If not, the process is repeated with an enhanced surrogate

3 Copyright © 2017 by ASME



model. From the obtained Pareto set, samples for validating ac-
curacy of the Pareto frontier are chosen as shown in Line 22. The
detailed algorithm for choosing these samples is given in Sec-
tion 3.4. Using the validation samples, resulting objective func-
tion values from both the surrogate and high-fidelity model are
obtained and compared to store the estimated error in Lines 23-
24.

Before proceeding to the next iteration with updated sam-
ples and an updated surrogate model, new samples must be iden-
tified to aid both exploration (regions with low information), and
exploitation (near the estimated Pareto set). This sampling is
performed in Lines 25 and 26, and added to the set of update
samples for the next iteration (Line 27).

3.3 Sampling for exploration

A novel sampling strategy was created for generating exploration
training samples (defined in Alg. 2). This algorithm is specif-
ically useful when the design space is tightly constrained, and
general space-filling sampling algorithms cannot easily produce
a reasonable number of feasible sample points. In Lines 4 and
5, the specified number of samples are generated using the latin
hypercube sampling method [38] and rescaled appropriately for
design variables ranges. This process generates samples of or-
thogonal designs throughout a hypercube of the design space

Algorithm 1 MO-ASMO parent script
1: Set dimx,dimf, lbx, lbf,ubx,ubf,cl,cnl; k← 0
2: Dk.xu← smp explore(initial sampling)
3: while (k < nmi)&(ε > εcr) do
4: k← k+1
5: Dk.fu,hf← hf func eval(Dk.xu)
6: if (k > 1) then
7: Dk.xst← [Dk−1.xst, Dk−1.xv, Dk.xu]
8: Dk.fst,hf← [Dk−1.fst,hf, Dk−1.fv,hf, Dk.fu,hf]
9: else

10: Dk.xst← [Dk.xu]
11: Dk.fst,hf← [Dk.fu,hf]
12: Mk← surr model constr(Dk.xst, Dk.fst,hf)
13: if (k > 1) then
14: i← []
15: for j← (each dimension number of xst) do
16: xtmp← sort(Dk.xst, j, ‘asc’)
17: i← [i, get idx

(
smp uniform

(
xtmp

)
, xtmp

)
]

18: xii,pop← [Dk−1.xP,p, Dk.xst (i) ]
19: else
20: xii,pop← rand pop()
21: Dk.[xP,p, fP,p]← NSGA-II

(
Mk, xii,pop

)
22: Dk.[xv, fv,p]← smp validate

(
Dk.[xP,p, fP,p]

)
23: Dk.fv,hf← hf func eval(Dk.xv)
24: εk←Dk.

∣∣∣∣fv,p− fv,hf
∣∣∣∣

25: xet← smp exploit
(
Dk.xP,p

)
26: xer← smp explore()
27: Dk+1.xu← [xet, xer]

without considering any constraints. Next, an optimization prob-
lem is solved for each sample point to satisfy constraints, while
minimizing the relocation distance of the point and maximizing
the sum of distances from existing points (Lines 6-8). Since the
subproblem given in Line 7 is a single-objective optimization
problem, any appropriate choice of nonlinear programming al-
gorithm can be used (sequential quadratic programming (SQP)
used here). All relocated training samples then satisfy the con-
straints, and have reasonably even distribution.

Algorithm 2 Sampling in a densely constrained design space

1: function smp explore()
2: if initial sampling then n← nii,er,smp
3: else n← ner,smp
4: xtmp,sc← smp lh(n, dimx)
5: xtmp← descale

(
xtmp,sc, lbx, ubx

)
6: for j← 1, 2, · · · , n do
7: Solve: min

{
f (x) =

∣∣∣∣x−xtmp ( j)
∣∣∣∣

+∑i [− ln(||x−xstored (i)|| 6= 0)] , ∀i} ,
subject to

{
Ax−b≤ 0, Aeqx−beq = 0,

c(x)≤ 0, ceq (x) = 0
}

8: xsmp ( j)← x
9: return xsmp

Algorithm 3 Sampling for validation of surrogate model

1: function smp validate
(
xP,p, fP,p

)
2: xtmp,1← scale

(
xP,p, lbx, ubx

)
3: ftmp,1← scale

(
fP,p, lbf, ubf

)
4: i← []
5: for j← (each dimension number of f) do
6: i← [i, get idx

(
min

(
ftmp,1 ( j)

))
]

7: i← [i, get idx
(
max

(
ftmp,1 ( j)

))
]

8: i← unique
(
i, [xtmp,1, ftmp,1]

)
9: xtmp,v← xtmp,1 (i) ; ftmp,v← ftmp,1 (i)

10: n← nv,smp−count
(
xtmp,v

)
11: xrem← xtmp,1 (idx 6= i) ; frem← ftmp,1 (idx 6= i)
12: while (count(xrem)> n) do
13: d← []; i← []; j← []
14: for j← (each index of xrem) do
15: for i← (each index of xrem) do
16: if i 6= j then
17: d← [d, dist(xrem (i) , xrem ( j)) ]
18: [i, j]← [{i, i} , {j, j} ]
19: [i, j, d]← sort([i, j, d], 3, ‘asc’)
20: i← i(1) ; j← j(1)
21: r← choose(i, j, ‘rand’)
22: xrem← xrem (idx 6= r) ; frem← frem (idx 6= r)
23: xv,smp← descale

(
[xtmp,v, xrem], lbx, ubx

)
24: fv,smp← descale

(
[ftmp,v, frem], lbf, ubf

)
25: return [xv,smp, fv,smp]
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3.4 Sampling for validation

Another sampling strategy generates sample points for surrogate
model validation (Alg. 3). An easy approach for choosing val-
idation samples would be to use estimated Pareto set points—
resulting from the MOEA—directly. However, it is desirable to
select a set of uniformly distributed points throughout the Pareto
set hypersurface. This requires calculation of distances between
pairs of Pareto-optimal points. First, the predicted Pareto set is
scaled in Lines 2-3 before measuring normalized distance. Since
each design variable may have its own scale, variable scaling
is important for measuring distances in the design space. The
anchor points in the objective function space are important for
characterizing the solution prediction. Thus all the anchor points
in the objective function space are selected for the validation in
Lines 5-7. The remaining validation sample points are chosen
as uniformly distributed samples selected from the Pareto set.
Distances between all pair combinations of points are computed
in Line 17. Distances are sorted in ascending order, and one
point out of a pair with the minimum distance is eliminated in
Lines 12-22 until the number of remaining points matches the re-
quired number of samples for validation. Since points are scaled,
rescaling is performed in Lines 23-24.

3.5 Sampling for exploitation

A new exploitation sampling strategy was developed, inspired by
force-directed layout algorithms, and is presented in Alg. 4. In
this sampling stage, sampling points must be placed not on, but
near the Pareto set hypersurface to improve surrogate model ac-
curacy in the neighborhood of the estimated solution (Pareto set).
Sample points are subjected to two types of predefined forces,
and move dynamically toward equilibrium. One type of force is
an attractive force between new sample points and base points,
as quantified in Eqn. (1):

~F =C1 ln
(

d
C2

)
ŝ (1)

where d = ||xbase−xnew|| , ŝ= (xbase−xnew)/d. The base points
are defined as n2 number of centroids of the predicted Pareto
set. The other type of force is a repulsive force between the new
points and the points from the Pareto set, as defined in Eqn. (2):

~F =
nP

∑
i=1

(
C3

d2
i

)
ŝi (2)

where di =
∣∣∣∣xscaled,i−xnew

∣∣∣∣ , ŝi = (xscaled,i−xnew)/di, and nP is
the number of points in the Pareto set. This force ensures that the
new samples maintain an appropriate distance from the Pareto
set hypersurface.

The Pareto set is scaled in Line 3, and the centroid of the
Pareto set is computed in Line 4. From the centroid, n1 design
points with the largest distance from the centroid are selected as
“base points” in Lines 5-8. Also, centroids of clustered Pareto

Algorithm 4 Sampling for exploitation of predicted Pareto set

1: function smp exploit
(
xP,p
)

2: net,smp,1← 20% of net,smp; net,smp,2← net,smp−net,smp,1
3: xsc← scale

(
xP,p, lbx, ubx

)
4: xctr,1← cluster ctr(xsc, 1)
5: d← dist

(
xsc, xctr,1

)
6: i← get idx(sort([xsc, d], 2, ‘des’))
7: i← unique

(
i
(
idx = 1, 2, · · · , net,smp,1

))
8: xctr,2← xsc (i)
9: xctr,2← [xctr,2, cluster ctr

(
xsc, net,smp,2

)
]

10: xFDL← xctr,2 +0.1×sign(rand(dimx)−0.5)xctr,2
11: vFDL← 0
12: while (¬(enough iterations) ‖ ¬(vFDL� ε)) do
13: for j← (each index of xFDL) do
14: da← dist

(
xctr,2 ( j) , xFDL ( j)

)
15: sa←

(
xctr,2 ( j)−xFDL ( j)

)
/da

16: F( j)←Ca1 ln(da/Ca2)sa
17: for j← (each index of xFDL) do
18: for i← (each index of xsc) do
19: db← dist(xsc (i) , xFDL ( j))
20: sb← (xsc (i)−xFDL ( j))/db
21: F( j)← F( j)+Cb1/(db)2sb
22: vFDL← (vFDL +(F/M)∆t)/Cd
23: xFDL← xFDL +vFDL∆t
24: xsmp← descale(xFDL, lbx, ubx)
25: return xsmp

set points are obtained to add as “base points” using k-means
clustering in Line 9. From these base points, the same number
of new samples are generated and placed near the corresponding
base points in Line 10. Dynamic simulation of generated points
in multidimensional space, subject to the forces acting on them,
is performed iteratively in Lines 12-23 until the point positions
have converged. The first force type is calculated in Lines 13-
16 for each generated point. Also, the second force type is cal-
culated in Lines 17-21 and added together in multidimensional
vector form for each point j. The velocity values for the gener-
ated points are updated as given in Line 22 and Eqn. (3a) with
a damping factor of 1/Cd , which results in position convergence
for each point. As given in Line 23, the resulting location at the
next time step can be computed iteratively using the current lo-
cations of the generated sample points and the velocity values
of corresponding points. Updates for velocity and position are
given in Eqns. (3a) and (3b):

~v(r+1)
new =

{
~v(r)new +~a∆t

}
/Cd (3a)

~x(r+1)
new =~x(r)new +~v(r+1)

new ∆t, (3b)

where~a =~F/M, (r+1): next step, (r): current step, M: mass,
Cd : damping constant, and ∆t: time step size. If the damping
constant Cd is greater than 1, the velocity approaches zero, lead-
ing to an equilibrium state.
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4 TEST PROBLEMS

4.1 Osyczka and Kundu problem

The Osyczka and Kundu problem [39] was first introduced to
demonstrate the performance of a multiobjective evolutionary al-
gorithm, and has been used widely since for testing multiobjec-
tive optimization algorithms. It involves six design variables, six
inequality constraints, and two objective functions as given in
Eqns. (4) and (5):

min f(x) = [ f1, f2] subject to g1 ≤ 0, g2 ≤ 0, g3 ≤ 0,
g4 ≤ 0, g5 ≤ 0, g6 ≤ 0, (4)

where

f1 (x) =−[25(x1−2)2 +(x2−2)2 +(x3−1)2

+(x4−4)2 +(x5−1)2 ] (5a)

f2 (x) = x2
1 + x2

2 + x2
3 + x2

4 + x2
5 + x2

6 (5b)
g1 (x) =−x1− x2 +2 (5c)
g2 (x) = x1 + x2−6 (5d)
g3 (x) =−x1 + x2−2 (5e)
g4 (x) = x1−3x2−2 (5f)

g5 (x) = (x3−3)2 + x4−4 (5g)

g6 (x) =−(x5−3)2− x6 +4. (5h)

This test problem was selected due to its low computational ex-
pense for initial studies, and due to its non-convex and sharply-
kinked Pareto frontier. This leads to difficulty in approximating
the function response accurately using surrogate models. While
the computational expense of individual function evaluations is
low, we can assess the computational advantage of the new MO-
ASMO algorithm based on the total number of function evalua-
tions.

Figure 2 shows the resulting Pareto frontiers for this problem
obtained through application of the NSGA-II algorithm [1], as
well as the proposed MO-ASMO algorithm. The Pareto frontiers
are compared in the objective function space in Fig. 2(a), and
intermediate solutions computed by NSGA-II for three different

cases are given in Fig. 2(b). We used population sizes (npop)
of 500, 1000, and 2000 for solving this problem, and the corre-
sponding line colors in this figure are orange, blue, and black.
Dashed lines, dotted lines, and solid lines represent intermedi-
ate solutions after about 20000, 100000, and 400000 function
evaluations (nhf), respectively. After 40,3307 function evaluation
(npop = 2000), the solution converged to the known Pareto fron-
tier of the Osyczka and Kundu problem. Thus, we see that this
problem is solved efficiently using a standard MOEA in terms of
the number of function evaluations.

Figure 3 illustrates the predicted Pareto set obtained from
the surrogate model (black symbols), and the predicted and true
values of chosen validation points (red symbols). The “×” points
represent the predicted value on the surrogate model, “◦” points
correspond to accurate results from high-fidelity function evalu-
ations (which in most cases will be numerical simulations). Dur-
ing the early iterations the surrogate model cannot represent the
original response accurately. As we see in Fig. 3(a), the predicted
Pareto frontiers have significant error (for each validation design
point, we show the difference between the result predicted by
the surrogate model and by the original model). These erroneous
predictions are corrected by including original function evalua-
tion results for validation points in the set of training points for
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FIGURE 2: Comparison of Pareto frontiers of Osyczka and Kundu
problem obtained by NSGA-II and MO-ASMO algorithms. Interme-
diate solutions of NSGA-II for 3 cases of different population number
are also given in (b).
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FIGURE 3: Predicted Pareto set and comparison between true and predicted results at the validation points at each iteration of MO-ASMO for the
Osyczka and Kundu problem.
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the next surrogate model construction.
The total number of function evaluations required to ob-

tain an accurate Pareto set using the NSGA-II algorithm, nhf =
403,307, is much larger than the number of original function
evaluations required by the MO-ASMO algorithm to obtain ap-
proximately the same Pareto set (nhf = 378, 20 iterations as
shown in Fig. 3(e)). If we can sacrifice some solution accuracy, a
nearly optimal solution can be obtained after ten iterations, with
nhf = 184 original function evaluations, as shown in Fig. 3(c).

4.2 Valley-shaped constraint problem

We developed a new test problem defined in Eqns. (6) and (7),
illustrated in Fig. 4, to test more thoroughly the ability of the
proposed framework to manage tightly-constrained feasible do-
mains. This problem combines sinusoidal and exponential objec-

(a) Objective function responses (b) Constraint function

(c) Objective function 1 (d) Objective function 2

FIGURE 4: Illustration of valley shaped constraint problem

tive functions with a shifted Rosenbrock’s valley function [40] as
a constraint:

min f(x) = [ f1, f2] subject to g≤ 0, (6)

where

f1 (x) =(3sin(2.5x1)−2x1)
(
cos(x2)exp

(
−0.001x2

2
))

(7a)

f2 (x) =3(0.3 |x1|)19/25 ((1/8)x2 sin(5x2)) (7b)

g(x) =
(

100
(
x2− x2

1
)2

+(x1−1)2
)
−1. (7c)

The feasible region in the design space is shown in Figs. 4(a) and
(b), and is plotted with light gray. For this constraint function,
the feasible design space is long, narrow, non-convex, and nearly
flat. Thus, it is not efficient to generate samples for training the
surrogate model using standard sampling strategies. Also, the
Pareto frontier of this problem is neither continuous in the ob-
jective function space, nor in the design space (see Figs. 5(e)
and 4(a)), which increases design exploration difficulty. The
proposed MO-ASMO algorithm demonstrates an advantage that
stems from utilizing only feasible sample points.

Figure 5 illustrates the predicted Pareto set obtained from
the surrogate model (small black symbols) and predicted and
true values of chosen validation points (large symbols). As
with the preceding figures, the symbol “×” represents the values
predicted by the surrogate model, while the symbol “◦” corre-
sponds to true values obtained using the original function. Fig-
ure 5(a)–(c) shows selected intermediate steps, and Fig. 5(d)
shows the converged solution. Figure 5(e) presents a compar-
ison of Pareto frontiers obtained by NSGA-II and MO-ASMO
algorithms. NSGA-II requires nhf = 572,026 original function
evaluations to obtain an accurate Pareto set (population size of
2,000). In contrast, MO-ASMO requires only nhf = 85 function
evaluations (six iterations) to obtain approximately the same so-
lution (Fig. 5(e)).

4.3 Suspension with viscoelastic damper problem

Another problem we developed for testing the MO-ASMO is
an optimization of a quarter car suspension with viscoelastic
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FIGURE 5: Predicted Pareto set and comparison between true and predicted results at the validation points at each iteration of MO-ASMO for the
valley shaped constraint problem.
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(a) Linear damper model [41] (b) Viscoelastic damper model

FIGURE 6: Quarter car suspension models with linear damper and vis-
coelastic damper.

damper, which is given in Fig. 6(b). The quarter car suspension
model shown in Fig. 6(a) is a common simplification for ana-
lyzing and designing vehicle dynamics, while maintaining prac-
tical suspension design elements [42, 41, 43]. Sprung mass m1
represents the vehicle body mass, while unsprung mass m2 rep-
resents the mass of the suspension components and wheel set.
A previous study demonstrated that viscoelasticity can improve
vibration isolation performance throughout a wide range of fre-
quencies [44, 45]. We replaced the linear damper c1 between
sprung and unsprung mass in Fig. 6(a) with a linear viscoelas-
tic damper VE in Fig. 6(b). This VE damper was parameterized
using single- and multi-mode Maxwell models [46]. In this prob-
lem, design variables are parameters defining the VE element and
the spring constant k1. Other parameters, m1, m2, k2, and road in-
put profile z(t) of 100 meters are predefined after Ref. [47].

The design objectives of this problem are (1) enhancing the
comfort metric by minimizing f1 in Eqn. (8a) and (2) enhancing
the handling metric by minimizing f2 in Eqn. (8b). The first ob-
jective function f1 uses peak acceleration amplitude as a proxy

metric for vehicle comfort, since International Standard Organi-
zation (ISO 2631) recommends acceptable vibration levels based
on a correlation between acceleration values and their surveyed
human comfort levels [48]. The second objective function f2
uses a difference between displacements of the unsprung mass
and the road profile, which represents a deflection of the tire, as
a proxy for vehicle handling performance. Reducing this met-
ric corresponds to less variance in tire contact force, helping to
enhance cornering and traction performance [49].

f1 = max |ẍ1 (t)| (8a)
f2 = max |x2 (t)− z(t)| (8b)

The linear viscoelastic behavior can be described by a
time-dependent function, the relaxation kernel, K (t). Using
this relaxation kernel, the time-dependent force through a one-
dimensional viscoelastic element, Fve, can be represented as a
convolution integral:

Fve (t) =
∫ t

−∞

K
(
t− t ′

)
ẋ
(
t ′
)

dt ′ =
∫

∞

0
K (s) ẋ(t− s)ds (9)

where ẋ is the deformation velocity of the viscoelastic element
and s = t − t ′. In general, the relaxation kernel K (t) does not
require a structure of linear springs and dashpots. Here, how-
ever, we utilize the multi-mode Maxwell model, which utilizes
this specific structure, for our parameterization of the relaxation
kernel function to simplify design representation. This model
includes a series of parallel connections of multiple Maxwell el-
ements, and a resultant expression of the relaxation kernel func-
tion for an M-mode Maxwell model can be defined by:

K (t) =
M

∑
m=1

Km exp(−t/λm) (10)

(a) Convergence (b) 1-Mode (c) 2-Mode (d) 3-Mode (e) 4-Mode (f) 5-Mode (g) 6-Mode

FIGURE 7: MO-ASMO convergence (a), viscoelastic kernel design (upper row of (b)–(g)), and corresponding Pareto frontier in objective function
space (lower row) of the quarter car suspension optimization problem with viscoelastic damper using multi-mode Maxwell model.
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where Km are the Maxwell spring constants and λm are the re-
laxation times. A Maxwell element consists of a linear spring
and a linear dashpot connected in series. Since this parameteri-
zation can have the same (or similar) relaxation kernel function
with many different sets of parameters, we limited λm to have
monotonically increasing values using the constraints λi+1 > λi.
Also, to provide a fair comparison between cases with a different
number of modes M, the sum of Km is capped by an upper bound;
these values should not exceed the resultant Maxwell spring con-
stant for the single mode case. This requirement is implemented
using the constraint ∑m Km < (ub of K1). Although these con-
straints are in the form of a linear inequality, it is not possible to
utilize linear constraints for this optimization problem because
the quarter car suspension model is scaled in log space. These
constraints, however, can be evaluated without running expen-
sive simulation, but may shrink the feasible design region signif-
icantly, which is a challenge that this MO-ASMO algorithm was
developed specifically for.

A simulation of this quarter suspension design problem is
solved using the Euler predictor-corrector method with a numeri-
cal evaluation of the nested convolution integral given in Eqn. (9)
for each time derivative function evaluation. This solution ap-
proach is a type of single-shooting method for dynamic system
optimization, and with the numerous required convolution inte-
gral evaluations, the computational cost is very high compared
to the other test problems. As a result, the MO-ASMO solution
method is beneficial not only in terms of total function evalua-
tions, but also computational time.

Convergence behaviors in terms of the L2-norm for six
cases, ranging from single- to six-mode Maxwell models, are
shown in Fig. 7(a) and the shape of the relaxation kernels and
corresponding points in the Pareto frontier for each case are
shown in (b)–(g). The number of design variables increases
from 3 to 13 as the mode increases from 1 to 6. When us-
ing a lower-order Maxwell model, the required number of func-
tion evaluations is very low (i.e., k = 7, nhf = 112 for 1-mode,
k = 15, nhf = 321 for 2-mode). However, a meaningful perfor-
mance enhancement was not observed by increasing the order of

the Maxwell model, and this change in design representation in-
creased the number of function evaluations (k = 109, nhf = 4911
for six-mode) here. While the road profile has some spectral
variance, the suspension is tested using a constant vehicle speed
(60 mph). Lack of complexity in the test conditions may be im-
portant factors in the observed limited benefit from increasing
the number of Maxwell modes. This problem is effective for
testing and demonstrating the MO-ASMO algorithm, but further
study is required to determine under what conditions a viscoelas-
tic damper is beneficial. We expect that its frequency-dependent
properties may prove to be valuable under more realistic test con-
ditions. For example, varying the vehicle speed (and thus input
frequency) according to a drive cycle such as the EPA standard
cycle [50]. These additional studies are beyond the scope of this
article, which is focused on understanding the new MO-ASMO
framework.

5 ANALYSIS

5.1 Balance between exploration and exploitation

The purpose of adaptively refining surrogate models is to obtain
an accurate set of Pareto-optimal designs. Two aspects are im-
portant in this adaptive procedure: 1) a thorough design space
exploration to find regions that contains global optima, and 2) a
precise local search to obtain an accurate solution. Having a good
balance between these two objectives is a key for MO-ASMO al-
gorithm effectiveness, but there is no universal principle to bal-
ance between exploration and exploitation for all cases.

Figure 8 compares error and Pareto set convergence for dif-
ferent balance ratios between exploitation and exploration, based
on the Osyczka and Kundu problem. Here we define this balance
as the ratio of new sample points placed according to exploitation
objectives to the number of new sample points placed accord-
ing to exploration objectives. Since the MO-ASMO framework
is based on training samples generated using randomized algo-
rithms such as Latin hypercube sampling, it is very difficult to
characterize convergence using only a few tests. However, we
see in Fig. 8(a) that error for all different ratios have a decreas-
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(a) Error comparison (b) Pareto set convergence comparison at a magnified region in the objective function space

FIGURE 8: MO-ASMO convergence comparisons with different ratios of exploitation and exploration samples for the Osyczka and Kundu problem.
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ing trend as iteration number increases. A few cases, such as 4:6
(4 samples for exploitation and 6 samples for exploration), ex-
hibit oscillatory convergence characteristics. 5:5 and 6:3 cases
exhibit relatively slow convergence, while 9:1, 8:2, 2:8, and 3:7
cases exhibit rapid and stable diminishing error values. This indi-
cates that a proper balance between exploration and exploitation
cannot be achieved simply through use of an equal number of
samples for the two categories. More study on systematically
balancing samples for exploration and exploitation is required
(for multi-objective surrogate modeling methods in particular).

Figure 8(b) shows a magnified view of the Pareto set for se-
lected iterations (k =3, 5, 7, 10, and 20) for each distinct balance
ratio. At iteration 20 (yellow), most cases are converged to the
true solution (black, obtained by NSGA-II). However, intermedi-
ate solutions are differ across the distinct cases. As we see from
Fig. 8(a), when sample points are allocated equally to exploita-
tion and exploration, the MO-ASMO algorithm exhibits some
convergence difficulties. One possible approach for resolving
this problem is the observation that the number of sample points
for these two categories may vary with respect to how well the
surrogate model represents the trend of global responses, such
as inflections, convexity, and monotonicity. Thus, ongoing work
aims to formulate how the ratio and distribution of samples can
be improved during surrogate model refinement iterations.

5.2 Hybrid DO/ASMO approach

Overall, the surrogate modeling optimization strategy is efficient
compared to direct optimization. However, during the initial sur-
rogate model refinement stages, predicted solution values can
be highly inaccurate. Also, when exploring high-dimension de-
sign spaces, it can be difficult to explore extreme design points,
which are often important as these are where anchor points usu-
ally are found. Finding Pareto frontier anchor points in the ob-
jective function space is not an easy task for MOEAs as they are
based on heuristic strategies for expanding the region of solu-
tions considered. To explore these extreme design points, direct
optimization may be useful if the computational cost is not ex-
cessive. Thus, ongoing investigation is addressing how a hybrid
direct and adaptive surrogate modeling-based optimization (hy-
brid DO/ASMO) may further accelerate Pareto set identification.
When finding anchor points, we can use a single-objective op-
timization formulation for each objective function as a supple-
ment. After obtaining these anchor points, we can use this in-
formation as a part of the initial population for the MOEA used
within MO-ASMO.

6 CONCLUSION

A multiobjective adaptive surrogate modeling-based optimiza-
tion (MO-ASMO) framework is introduced here with novel sam-
pling strategies to address shortcomings of conventional multi-
objective optimization methods, specifically for problems with

computationally expensive simulations and tightly constrained
feasible domains. First, it is possible to sample designs in a
tightly-constrained design space without violating constraints by
running an optimization subproblem for each sample point. In
the exploration stage, the objective function of this optimiza-
tion subproblem minimizes relocation distance, while maximiz-
ing the distance between existing points and the new point. Sec-
ond, generating samples to validate the predicted Pareto frontier
requires even sampling across the hypersurface of the estimated
Pareto set. Finally, a sampling strategy for exploitation needs to
place new sample points near, but not on, the Pareto set hypersur-
face. A force-directed layout algorithm was used to place these
sample points.

The MO-ASMO algorithm was demonstrated using the Osy-
czka and Kundu problem, and a new valley-shaped constraint test
problem. These problems normally require many thousands of
of function evaluations to solve. However, the proposed MO-
ASMO algorithms obtained the Pareto optimal solutions with or-
ders of magnitude fewer evaluations. For example, the NSGA-
II algorithm required 403,307 function evaluations to solve the
Osyczka and Kundu problem, whereas the MO-ASMO algo-
rithm required only 378 function evaluations. An even larger
difference was observed with the valley-shaped constraint prob-
lem. NSGA-II required 572,026 function evaluations, whereas
the MO-ASMO algorithm required just 85 original function eval-
uations. These ratios, however, cannot be used directly for as-
sessing computational cost. Additional factors include calcu-
lation of new samples, including solution of optimization sub-
problems for sample placement, and MOEA solution with the
surrogate model. If the original system model exhibits signif-
icant computational expense, it is anticipated that MO-ASMO
will result in significant practical efficiency improvements. The
MO-ASMO algorithm was also applied to a suspension design
problem with viscoelastic damping as an example of a practi-
cal engineering design problem. Unlike other two test problems,
this problem has a relatively expensive black-box simulation and
exhibits complicated output responses. Having 3 to 13 design
optimization variables for the one-mode to six-mode cases, re-
spectively, convergence characteristics in terms of number of
iterations and number of function evaluations were compared.
Although we could not observe a meaningful performance im-
provement through increasing the number of Maxwell modes,
MO-ASMO was demonstrated to be effective for a relatively ex-
pensive and complicated practical engineering design problem.

Ongoing work is addressing the application of this frame-
work to more expensive and realistic engineering problems, in-
cluding fluid flow problems, such as surface texture design prob-
lems for lubricated sliding contact [7, 27]. The new MO-ASMO
algorithm has the potential to support solution of complex prob-
lems such as those with increased fidelity beyond what is pos-
sible currently. This may help explore new types of designs
with previously unexploited mechanisms to achieve new perfor-
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mance levels or functionality. In the sliding contact problem, this
would support inclusion of additional physical phenomena in the
model, while still enabling solution in a practical time period.
Another possible implication of this algorithm is to simultane-
ous design problems of rheologically complex material and the
corresponding system [51, 44, 45]. The algorithm presented here
would be especially beneficial in this case as material functions
design, e.g., viscoelasticity, need to be constrained to align them
more closely with physically realizable materials. These com-
plex physical constraints may significantly shrink the feasible
region and the developed sampling methods may reduce com-
putation effort.

The MO-ASMO algorithm may be enhanced further via a
hybrid approach as described in Sec. 5.2. This approach may
support more efficient design space exploration without relying
solely on randomized sampling strategies. Finally, a deeper in-
vestigation of balancing exploration and exploitation should be
conducted to enhance our understanding of how best to use the
MO-ASMO algorithm for challenging problems, aiming to re-
duce the required number of function evaluations, while still im-
proving the likelihood of identifying globally optimal Pareto sets.
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